Application System/400 $C41-9658-02
Data Management Guide

Version 2

Application Development

Applicaﬁon System/400 SC41-9658-02
Data Management Guide

Version 2

Take Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page xi.

Third Edition (November 1993)

This edition applies to the licensed program IBM Operating System/400 (Program 5738-SS1), Version 2 Release 3 Modification 0,
and to all subsequent releases and modifications until otherwise indicated in new editions. This major revision makes obsolete
SC41-9658-01. Make sure you are using the proper edition for the level of the product.

Order publications through your IBM representative or the IBM branch serving your locality. Publications are not stocked at the
address given below.

5 is provided at the back oi ihis pubiication. if the form has been

(o]
Q
@
=
(/4]

Attn Department 245

IBM Corporation

3605 Highway 52 N

Rochester, MN 55901-7899 USA

or you can fax your comments to:

United States and Canada: 800+937-3430
Other countries: (+1)+507+253-5192

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you or restricting your use of it.

© Copyright International Business Machines Corporation 1991, 1993. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices Xi
Programming Interface Information Xi
Trademarks and Service Marks Xii
About This Guide Xiii
Who Should Use This Guide xiii
Summary of Changes XV
Authority Change for CPYF and
CPYFRMQRYF Commands XV
Override Commands XV
Controllers that Support Enhanced Interface
for Nonprogrammable Work Stations . . xv
Chapter 1. Introduction 1-1
Chapter 2. Fiie Processing 2-1

Data Management Operations Overview . . 2-1

Security Considerations 2-6
File Object Authority 2-6
File Data Authorites 2-6

Authorities Required for File Operations . 2-6
Specifying Authorities When Creating Files 2-7
Sharing Files 2-8
Open Considerations for Files Shared in a
Job 2-9
Input/Output Considerations for Files

Sharedinadob 2-9
Close Considerations for Files Shared in
adob ... 2-10
Allocating File Resources 2-10
Opening Files 2-11
Detecting File Description Changes 2-12
Open and I/O Feedback Area 2-14
Error Handling 2-15
Messages and Message Monitors 2-16
Major/Minor Return Codes 2-17
Actions for Error Recovery 2-17
Related Information on File Types 2-20

Chapter 3. Overrides and File Redirection 3-1

Overriding Files 3-1
Applying Overrides When Using High-Level
Language Programs 3-2
Job Level and Call Levels with Override
Commands 3-4

Using a Generic Override for Printer Files 3-10
Applying Overrides When Compiling a
Program

© Copyright IBM Corp. 1991, 1993

Effect of Overrides on Some System

Commands 3-12
Deleting Overrides 3-12
Displaying Overrides 3-14
File Redirection 3-17

Overriding Program Device Entries 3-22
Overriding Remote Location Name 3-23
Overriding Session Attributes 3-23
Overriding Remote Location Name and

Session Attributes 3-23
Applying OVRICFDEVE Command 3-24
Deleting Device Entry Overrides 3-25
Displaying Device Entry Overrides 3-25

Chapter 4. Copying Files 4-1
Basic Copy Function 4-5
File Types 4-6
Record Sequence 4-6

Resending Copy File Completion Message 4-7

Monitoring for Copy Errors 4-7
Monitoring for Zero Records in the

From-File 4-8
Creating a Duplicate To-File Member . . 4-9
CPYFRMQRYF Command Support for

CCSIDs 4-9
CPYSRCF Command Support for

CCSIDs 4-10

Copy Commands Support for Null Values 4-10
Adding and Replacing Records (MBROPT

Parameter) 4-10
Creating the To-File (CRTFILE Parameter) 4-12
Selecting Members or Labels to Copy

(FROMMBR, FROMLABEL, TOMBR, and

TOLABEL Parameters) 4-14

Adding Members to the To-File 4-15
Selecting Records to Copy 4-16

Selecting Records Using a Specified

Record Format Name (RCDFMT

Parameter) 4-16
Selecting Records Using Relative Record

Numbers (FROMRCD and TORCD

Parameters) 4-17
Selecting Records Using Record Keys

(FROMKEY and TOKEY Parameters) 4-17
Selecting a Specified Number of Records

(NBRRCDS Parameter) 4-20
Selecting Records Based on Character

Content (INCCHAR Parameter) 4-21
Selecting Records Based on Field Value

(INCREL Parameter) 4-22

Copying Deleted Records (COMPRESS

Parameter), 4-23
Printing Records (PRINT, OUTFMT, and
TOFILE(*PRINT) Parameters) 4-24
Creating an Unformatted Print Listing . 4-25
Copying between Different Database Record
Formats (FMTOPT Parameter) 4-25
Conversion Rules 4-34
Adding or Changing Source File Sequence
Number and Date Fields (SRCOPT and
SRCSEQ Parameters) 4-35
Copying Device Source Files to Database
Source Files 4-35
Copying Database Source Files to Device
Source Files 4-35
Copying Database Source Files to
Database Source Files 4-35
Recoverable Error Considerations (ERRLVL
Parameter) 4-36
Date, Time, and Timestamp Considerations 4-37
Position Error Considerations 4-37
Allocation Considerations 4-38
Authority 4-39
Performance 4-39
Chapter 5. Spool Support 5-1
Output Spooling Overview 5-1
Device Descriptions 5-2
Summary of Spooled File Commands . . 5-2
Locating Your Spooled Files 5-2
File Redirection 5-2
Output Queues 5-3

Summary of Output Queue Commands . 5-3

Default Printer Output Queues 5-4
Default System Output Queues 5-4
Creating Your Own Output Queues 5-4
Order of Spooled Files on an Output
Queue 5-4
Using Multiple Output Queues 5-5
Output Queue Recovery 5-5
Spooling Writers 5-6

Summary of Spooling Writer Commands 5-6

Spooled File Security 5-6
Controlling the Number of Spooled Files in
Your System 5-7
Command Examples for Additional Spooling
Support 5-7
Input Spooling Support 5-8
Summary of Job Input Commands 5-9
Job Queues, 5-9
Transferring Jobs 5-11
Using an Inline Data File 5-12
Spooling Subsystem 5-13
Spooling Library 5-13

iV AS/400 Data Management Guide

Appendix A. Feedback Area Layouts . . A-1

Open Feedback Area A-1
Device Definition List A-7
Volume Label Fields A-10

/O Feedback Area A-11
Common I/O Feedback Area A-11
I/O Feedback Area for ICF and Display

Files A-15
I/0O Feedback Area for Printer Files . .. A-18

I/O Feedback Area for Database Files . A-18

Get Attributes A-20
Appendix B. Double-Byte Character Set
Support B-1

Double-Byte Character Set Fundamentals . B-1

DBCS Code Scheme B-2
Shift-Control Characters B-3
Invalid Double-Byte Code and Undefined
Double-Byte Code B-3
Using Double-Byte Data B-3
Double-Byte Character Size B-4
Processing Double-Byte Characters B-4
Basic Characters B-4
Extended Characters B-4

What Happens When Extended
Characters Are Not Processed B-5
Device File Support ”
What a DBCS File Is
When to Indicate a DBCS File B-5

How to Indicate a DBCS File B-5
Improperly Indicated DBCS Files B-6
Display Support B-8
Inserting Shift-Control Characters B-8
Number of Displayed Extended Characters B-8
Number of Input Fields on a Display ... B-8
Effects of Displaying Double-Byte Data at
Alphanumeric Work Stations B-8
Copying Files B-9
Copying Spooled Files B-9
Copying Nonspooled Files B-9
Application Program Considerations B-9
Designing Application Programs That
Process Double-Byte Data B-10
Changing Alphanumeric Application
Programs to DBCS Application
Programs B-10
DBCS Font Tables B-10
Commands for DBCS Font Tables ... B-11

Finding Out if a DBCS Font Table Exists B-11
Copying a DBCS Font Table onto Tape

or Diskette B-11
Copying a DBCS Font Table from Tape
or Diskette B-12

Deleting a DBCS Font Table
Starting the Character Generator Utility
Copying User-Defined Double-Byte
Characters
DBCS Font Files
DBCS Sort Tables
Commands for DBCS Sort Tables
Using DBCS Sort Tables on the System
Finding Out if a DBCS Sort Table Exists
Saving a DBCS Sort Table onto Tape or
Diskette
Restoring a DBCS Sort Table from Tape
or Diskette
Copying a Japanese DBCS Master Sort
Table to a Data File
Copying a Japanese DBCS Master Sort
Table from a Data File
Deleting a DBCS Sort Table

DBCS Conversion Dictionaries B-17
System-Supplied Dictionary (for
Japanese Use Only) B-17
User-Created Dictionary B-17
Commands for DBCS Conversion
Dictionaries B-18
Displaying and Printing the DBCS
Conversion Dictionary B-22
Deleting a DBCS Conversion Dictionary ~ B-22
DBCS Conversion (for Japanese Use Only) B-23
Where You Can Use DBCS Conversion B-23
How DBCS Conversion Works B-24
Using DBCS Conversion B-24
Performing DBCS Conversion B-24
Bibliography H-1
Index X-1

Contents

\'J

Vi AS/400 Data Management Guide

Figures

2-1.
2-2.
3-1.
3-2.
3-3.
3-4.

3-5.
3-6.

3-7.
3-8.
3-9.
4-1.
5-1.

5-2.

Permanently Changing a File
Temporarily Changing a File
Overriding File Attributes
Levels within a Job
Job Level and Call Level Overrides
Overrides With the TFRCTL
Command
Override with Printer File Display
All File Overrides Display (One
File)
All Merged File Overrides Display
Contributing File Overrides Display
All File Overrides Display (All Files)
Result of Copies with
MBROPT(*ADD) Specified
Relationship of Output Spooling
Elements
Relationship of Input Spooling
Elements

© Copyright IBM Corp. 1991, 1993

3-16

3-16
3-17
3-17
3-17

5-3.
B-1.

B-2.
B-3.

B-4.
B-5.

B-6.

B-7.
B-8.

B-10.
B-11.

Typical Organization of an Input
Stream L
Single-byte and Double-byte Code
Schemes
IBM-Host Code Scheme
Display for Work with DBCS
Conversion Dictionary
Display for Edit Related Words
Display for Deleting a Conversion
Dictionary Entry
Display Produced by the
DSPIGCDCT Command
Example Screen 1
Example Screen 2
Example Screen 3
Example Screen 4
Example Screen 5

Vii

viii AS/400 Data Management Guide

Tables

2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
3-1.
4-1.
4-2.
4-3.

4-4.

4-5.

File Types and Their Main

Operations 2-3
High-Level Languages and Their

0S/400 Operations 2-4
High-Level Languages and Their

0S/400 Operations 2-5
Object Authority and Data Authority
Required for File Operations 2-7
0S/400 Data Management

Message Number Ranges 2-16
Major Return Code Definitions . . 2-17
File Redirections 3-18
Copy Operations 4-2
Summary of Copy Functions for
Database Files 4-4
Summary of Copy Functions for

Device Files 4-5
Valid Member or Label Parameters

for Copy Commands 4-15
Database-to-Database Copy

Operations 4-27

© Copyright IBM Corp. 1991, 1993

4-7.
4-8.

A-1.
A-2.
A-3.
A-4.

A-6.
A-7.

B-1.
B-2.

B-4.

Conversion Table 4-30
Field Conversions 4-35
Authority Required to Perform Copy
Operation 4-39
Open Feedback Area A-1
Device Definition List A-7
Volume Label Fields A-10
Common I/O Feedback Area . .. A-11
1/0 Feedback Area for ICF and

Display Files A-15

I/O Feedback Area for Printer Files A-18
1/0 Feedback Area for Database

Files A-18

Get Attributes A-20

IBM Japanese Character Set B-2

IBM Korean Character Set B-2

IBM Simplified Chinese Character

Set B-3

IBM Traditional Chinese Character

Set B-3
ix

X AS/400 Data Management Guide

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program,
or setrvice is not intended to state or imply that only that IBM product, program, or service may be used.
Any functionally equivalent product, program, or service that does not infringe any of the intellectual prop-
erty rights of IBM may be used instead of the IBM product, program, or service. The evaluation and
verification of operation in conjunction with other products, except those expressly designated by IBM, are
the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this document. The fur-
nishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to the IBM Director of Commercial Relations, IBM Corporation, Purchase, NY 10577, U.S.A.

This publication could contain technical inaccuracies or typographical errors.

This publication may refer to products that are announced but not currently available in your country. This
publication may also refer to products that have not been announced in your country. IBM makes no
commitment to make available any unannounced products referred to herein. The final decision to
announce any product is based on IBM's business and technical judgment.

Changes or additions to the text are indicated by a vertical line (I) to the left of the change or addition.

Refer to the “Summary of Changes” on page xv for a summary of changes made to data management
and how they are described in this publication.

This publication contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

This publication contains small programs that are furnished by IBM as simple examples to provide an
illustration. These examples have not been thoroughly tested under all conditions. 1BM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. All programs contained herein
are provided to you "AS IS". THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED.

Programming Interface Information

This guide is intended to help the customer manage data. This guide documents Product-Sensitive Pro-
gramming Interface and Associated Guidance Information provided by Operating System/400.

Product-Sensitive programming interfaces allow the customer installation to perform tasks such as diag-
nosing, modifying, monitoring, repairing, tailoring, or tuning of this IBM software product. Use of such
interfaces creates dependencies on the detailed design or implementation of the IBM software product.
Product-Sensitive programming interfaces should be used only for these specialized purposes. Because
of their dependencies on detailed design and implementation, it is to be expected that programs written to
such interfaces may need to be changed in order to run with new product releases or versions, or as a
result of service.

© Copyright IBM Corp. 1991, 1993 Xi

Trademarks and Service Marks

The following terms, denoted by an asterisk (*) in this publication, are trademarks of the IBM Corporation
in the United States or other countries or both:

Application System/Entry Integrated Language Environment
Application System/400 IPDS

APPN OfficeVision

AS/400 Operating System/400

C/400 0S/400

COBOL/400 RPG/400

FORTRAN/400 SAA

IBM System/370

ILE Systems Application Architecture
InfoWindow 400

The following terms, denoted by a double asterisk (**) in this publication, are trademarks of other compa-
nies:

RM/COBOL-85 Ryan McFarland Corporation
TELEX Telex Computer Products Inc.

Xii AS/400 Data Management Guide

About This Guide

This guide describes the data management
portion of the Operating System/400 licensed
program. Data management provides applications
with access to input and output file data that is
external to the application. There are several
types of these input and output files, and each file
type has its own characteristics. In addition, all of
the file types share a common set of character-
istics. This guide describes the characteristics
and programming use of database files and
spooled files. Printer device characteristics and
programming use are described in the Guide to
Programming for Printing, SC41-8194. Display
device file characteristics and programming use
are described in the manual Guide to Program-
ming Application and Help Displays, SC41-0011.
Tape and diskette characteristics and program-
ming use are described in Guide to Programming
for Tape and Diskette, SC41-0012.

After you understand what data management
support provides, you can proceed to learn how to
use that support. The how-to aspect of data man-
agement is covered in two other groups of
manuals: the high-level language manuals and
the manuals that describe the various tools on the
system for describing, creating, and maintaining
files.

The high-level language manuals describe how to
interact with the data management support. For
example, they describe the syntax for extracting
file descriptions from the system and including
them in the program, and how to code a read
operation using a keyed access path.

© Copyright IBM Corp. 1991, 1993

The tools manuals are similar to the language
manuals in that the syntax of using data manage-
ment is described. For example, the Data
Description Specifications Reference, SC41-9620,
describes the syntax for creating field, record, and
file descriptions that are associated with a file; the
Programming: Control Language Reference,
SC41-0030, describes the syntax for the
command that creates the file using the DDS file
description.

You may need to refer to other IBM manuals for
more specific information about a particular topic.
The Publications Guide, GC41-9678, provides
information on all the manuals in the AS/400
library.

For a list of publications related to this guide, see
the “Bibliography.”

Who Should Use This Guide

This guide is intended primarily for the application
programmer. This guide should also be useful for
those responsible for tailoring their system to use
double-byte data with the data management file
support.

Before using this guide, you should be familiar
with general programming concepts and termi-
nology, and have a general understanding of the
AS/400 system and OS/400 operating system.

xiii

XiV AS/400 Data Management Guide

Summary of Changes

Authority Change for CPYF and
CPYFRMQRYF Commands

When a local physical file is created by the Copy
File (CPYF) command or the Copy from Query
File (CPYFRMQRYF) command, the created to-file
is given all the authorities of the from-file. For
more information, see “Creating the To-File
(CRTFILE Parameter)” on page 4-12.

Override Commands

Override commands can be scoped to the job
level by specifying OVRSCOPE(*JOB) on the
command. To scope is to specify the boundary
within which systems resources can be used.
Overrides that are scoped to the job level remain

© Copyright IBM Corp. 1991, 1993

in effect until they are replaced, deleted, or until
the job in which they are specified ends. For
more information on overrides that are scoped to
the job level, see Chapter 3, “Overrides and File
Redirection.”

Controllers that Support
Enhanced Interface for
Nonprogrammable Work Stations

These controllers are now supported.

Appendix A, “Feedback Area Layouts” shows the
information you can obtain about display stations
from the 1/0 Feedback area using the get attri-
butes operation.

XV

XVi AS/400 Data Management Guide

Chapter 1. Introduction

Data management is the part of the operating
system that controls the storing and accessing of
data by an application program. The data may be
on internal storage (for example, database), on
external media (diskette, tape, printer), or on
another system. Data management, then, pro-
vides the functions that an application uses in cre-
ating and accessing data on the system and
ensures the integrity of the data according to the
definitions of the application.

Data management provides functions that allow
you to manage files (create, change, override, or
delete) using CL commands, and create and
access data through a set of operations (for
example, read, write, open, or close). Data man-
agement also provides you with the capability to
access external devices and control the use of
their attributes for creating and accessing data.

If you want to make more efficient use of printers
and diskette devices, data management provides
the capability of spooling data for input or output.
For example, data being written to a printer can
be held on an output queue until the printer is
available for printing.

On the IBM* AS/400* system, each file (also
called a file object) has a description that
describes the file characteristics and how the data
associated with the file is organized into records,
and, in many cases, the fields in the records.
Whenever a file is processed, the operating
system (the Operating System/400* or OS/400*
program) uses this description.

You can create and access data on the system by
using these file objects. Data management
defines and controls several different types of
files. Each file type has associated CL commands
to create and change the file, and you can also
create and access data through the operations
provided by data management.

© Copyright IBM Corp. 1991, 1993

File Types: The data management functions
support the following types of files:

Database files are files whose associated data is
stored permanently in the system.

Device files are files that provide access to
externally attached devices such as displays,
printers, tapes, diskettes, and other systems that
are attached by a communications line. The
device files supported are:

« Display files, which provide access to display
devices

« Printer files, which describe the format of
printed output

 Tape files, which allow access to data files on
tape devices

« Diskette files, which provide access to data
files on diskette devices

* Intersystem communications function
(OS/400-ICF) files, hereatter referred to as
ICF files, which allow a program on one
system to communicate with a program on the
same system or another system

Save files are files that are used to store saved
data on disk (without requiring diskettes or tapes).

Distributed data management (DDM) files are
files that allow access to data files stored on
remote systems.

Each file type has its own set of unique character-
istics that determines how the file can be used
and what capabilities it can provide. The concept
of a file, however, is the same regardless of what
type of file it is. When a file is used by a program,
it is referred to by name, which identifies both the
file description and, for some file types, the data
itself. This manual is designed to help you under-
stand the common characteristics of all file types
so you can use the files to their full capabilities.

1-1

1-2 AS/400 Data Management Guide

Chapter 2. File Processing

This chapter discusses basic aspects of pro-
cessing files. Topics include:

* File operations supported by the system for
use in high-level language programs

» File security considerations

» Sharing files in the same job

¢ Allocating file resources

* Temporarily changing a file when a program
uses it

* Feedback areas maintained by the system

» Handling file errors when programs run

Data Management Operations
Overview

Data management supports many operations that
high-level language programs can use to process
data. These include the following, which are
grouped by category:

e File Preparation

OPEN
Attaches a file to a program and prepares
it for 1/0O operations. A file may be opened
for any combination of read, write, update,
or delete operations.

ACQUIRE
Attaches a device or establishes a commu-
nications session for an open file in prepa-
ration for 1/0 operations.

e Input/Output

READ
Transfers a record from the file to the
program. The data is made available to
the program once the read has been suc-
cessfully completed.

WRITE
Transfers a record from the program to the
file.

© Copyright IBM Corp. 1991, 1993

WRITE-READ
Combines the WRITE and READ oper-
ations as one operation.

UPDATE
Updates a record with changed data. The
record must have been successfully read
prior to the update operation.

DELETE
Deletes a record in a file. The record must
have been successfully read prior to the
delete operation.

Commitment Control

COMMIT
Guarantees a group of changes are made
as a complete transaction across multiple
records or multiple files.

ROLLBACK
Rolls back a group of changes to the point
of the last commit operation.

Completion

FEOD
Positions the file at the last volume or at
the end of data. For those programs pro-
cessing files for output, the last buffer of
data is written. For those programs pro-
cessing files for input, an end-of-file condi-
tion is forced for the next input operation.

RELEASE
Detaches a device or a communications
session from an open file. /O operations
can no longer be performed for this device
or session.

CLOSE
Detaches a file from a program, ending 1/O
operations. Any remaining data in the
output buffer that has not been written will
be written prior to the completion of the
close.

2-1

The operations listed above have certain
restrictions based on file type and language
support. For example, a program may not write to
a file that has been opened for read only. Simi-
larly, a read-by-key may not be issued for an ICF
file. Since file overrides can occur during pro-
cessing, an operation may not be allowed for the
type of file that is ultimately being processed. See
Chapter 3, “Overrides and File Redirection,” for
additional information.

Table 2-1 on page 2-3 lists the file types and the
main operations that are allowed. There are addi-
tional functions supported for some file types that
are accomplished by additional operations or
changes to these operations. For information on
these additional functions and how the operations
given here apply to display, tape, and diskette
files, refer to either the Guide to Programming
Displays or the Guide to Programming for Tape

2-2 AS/400 Data Management Guide

and Diskette. For equivalent information for data-
base, ICF, DDM, printer, and save files, refer to
the Database Guide, the ICF Programmer’s

Guide, the DDM Guide, the Guide to Programming
for Printing, and the Advanced Backup and
Recovery Guide, respectively.

Table 2-2 on page 2-4 and Table 2-3 on

page 2-5 map the OS/400-supported operations
given in Table 2-1 on page 2-3 to the high-level
language operations (BASIC, C/400*,
RM/COBOL-85** for the AS/400 system,
COBOL/400*, FORTRAN/400*, PASCAL, PL/I,
and RPG/400* programming languages) supported
on the system. For additional information on each
operation and how it correlates to the file declara-
tion in the program, see the appropriate language
manual. Note that not all 0S/400 operations are
supported in all languages.

Table 2-1. File Types and Their Main Operations

File Types
Operation Database Diskette Tape Printer Display ICF DDM Save
OPEN
Read X X X - X X X X
Write X X X X X X X X
Update X - - - X1 - X -
Delete X - - - X1 - X -
READ
By relative X - - - X1 - X -
record number
By key X - - - - - X -
Sequential X X X - X X X X
Previous X - X - - - X -
Next X X X - X X X X
Invited
Device - - - - X X - -
WRITE-READ - - - - X X - -
WRITE
By relative X - - - X1 - X -
record number
By key X - - - - - X -
Sequential X X X X X X X X
FEOD X X X X - - X X
UPDATE
By relative X - - - X1 - X -
record number
By key X - - - - - X -
DELETE
By relative X - - - - - X -
record number
By key X - - - - - X -
ACQUIRE - - - - X X - -
RELEASE - - - - X X - -
COMMIT X - - - - - - -
ROLLBACK X - - - - - - -
CLOSE X X X X X X X X
1 Operation allowed only for subfile record formats
Chapter 2. File Processing 2-3

Table 2-2. High-Level Languages and Their OS/400 Operations

High-Level Languages

RM/COBOL-85 COBOL/400
for the AS/400 Programming
Operation BASIC C/400 Programming Language System Language
OPEN
Read OPEN INPUT fopen, _Ropen OPEN INPUT, OPEN INPUT
OPEN [-O
Write OPEN OUTPUT | fopen, _Ropen OPEN OUTPUT, | OPEN OUTPUT,
OPEN EXTEND | OPEN EXTEND
Update OPEN OUTIN fopen, _Ropen OPEN I-O OPEN I-O
Delete OPEN OUTIN fopen, _Ropen OPEN I-O OPEN I-O
READ
By relative READ REC _Rreadd READ READ
record number
By key READ KEY _Rreadk, _Rformat READ READ KEY
Sequential READ NEXT, fread, fgetc, fgets, READ READ
GET QXXPGMDEV, QXXFORMAT,
_Rreadf, _Rreadl, _Rreadn,
_Rreadp, _Rreads, _Rformat,
_Rpgmdev
Previous READ PRIOR _Rreadp READ
Next READ NXT, fread, _Rreadn READ, READ
GET NEXT
Invited Device QXXREADINVDEYV followed READ
by fread, _Rreadindv
WRITE-READ _Rwriterd, _Rformat, _Rpgmdev
WRITE
By relative WRITE REC _Rwrited WRITE WRITE
record number
By key WRITE _Rwrite, _Rformat WRITE
Sequential WRITE fwrite, fputc, fputs, WRITE WRITE
QXXPGMDEV, QXXFORMAT,
_Rwrite, _Rformat, _Rpgmdev
FEOD _Rfeod
UPDATE
By relative REWRITE REC _Rupdate REWRITE REWRITE
record number
By key REWRITE KEY _Rupdate REWRITE REWRITE
DELETE
By relative DELETE REC _Rdelete DELETE DELETE
record number
By key DELETE KEY _Rdelete DELETE DELETE
ACQUIRE QXXACQUIRE, _Racquire ACQUIRE
RELEASE QXXRELEASE, _Rrelease DROP
COMMIT QXXCOMMIT, _Rcommit COMMIT
ROLLBACK QXXROLLBCK, _Rrolibck ROLLBACK
CLOSE CLOSE, END fclose, _Rclose CLOSE, STOP CLOSE, STOP
RUN, CANCEL, RUN, CANCEL
GOBACK

2-4 AS/400 Data Management Guide

Table 2-3 (Page 1 of 2). High-Level Languages and Their OS/400 Operations

High-Level Languages

RPG/400
FORTRAN/400 Programming Lan- Programming
Operation guage PASCAL PL/ Language
OPEN
Read OPEN ACTION='READ', READ RESET, GET, OPEN INPUT OPEN, primary file
READ,
READLN
Write OPEN ACTION='WRITE', WRITE REWRITE, OPEN OPEN, primary file
WRITE, OUTPUT
WRITELN
Update OPEN ACTION='READ/WRITE"', UPDATE OPEN OPEN, primary file
WRITE UPDATE
Delete UPDATE OPEN OPEN, primary file
UPDATE
READ
By relative READ REC GET, READ READ KEY READ, CHAIN
record number
By key READ KEY READ, READE,
CHAIN
Sequential READ GET, READ, READ NEXT, READ, primary file
READLN GET
Previous BACKSPACE READ GET, READ, READ PRV READP, REDPE
READLN
Next READ GET, READ, READ NXT, READ, READE
READLN GET
Invited Device READ
WRITE-READ EXFMT
WRITE
By relative WRITE REC PUT, WRITE, WRITE,
record number WRITELN EXCPT
primary file
By key WRITE KEY WRITE, EXCPT
Sequential WRITE PUT, WRITE, WRITE, PUT WRITE, EXCPT
WRITELN primary file
FEOD FEOD
UPDATE
By relative WRITE REC PUT, WRITE, REWRITE UPDAT, primary file
record number WRITELN KEY
By key REWRITE UPDAT, primary file
KEY
DELETE
By relative DELETE DELET, primary file
record number
By key DELETE KEY DELET, primary file
ACQUIRE ACQ
RELEASE REL
COMMIT use CL PLICOMMIT COMIT
COMMIT subroutine
ROLLBACK use CL PLIROLLBACK | ROLBK
ROLLBACK subroutine

Chapter 2. File Processing

2-5

Table 2-3 (Page 2 of 2). High-Level Languages and Their 0S/400 Operations

High-Level Languages

RPG/400
FORTRAN/400 Programming Lan- Programming
Operation guage PASCAL PL/ Language
CLOSE CLOSE, END CLOSE, END CLOSE, CLOSE, RETRN
STOP

Security Considerations

This section describes some of the file security
functions. The topics covered include the authori-
zations needed to use files and considerations for
specifying these authorities when creating a file.
For more information about using the security
function on the system, see the Security
Reference manual.

File Object Authority

The following describes the types of authority that
can be granted to a user for a file:

Object Operational Authority: Allows you to
look at an object description and use the object as
determined by your data authorities to the object.
Object operational authority is required to:

¢ Open the file for processing. You must also
have read authority to the file. For device files
that are not using spooling, you must have
object operational and also all data authorities
to the device.

¢ Compile a program which uses the file
description.

« Display the file description.

¢ Delete the file.

e Transfer ownership of the file.

¢ Grant and revoke authority.

¢ Change the file description.

* Move or rename the file.

Object Existence Authority: Object existence
authority is required to:

¢ Delete the file.

2-6 AS/400 Data Management Guide

e Save, restore, and free the storage of the file.
¢ Transfer ownership of the file.

Object Management Authority: Object manage-
ment authority is required to:

* Grant and revoke authority. You can grant
and revoke only the authority that you already
have.

¢ Change the file description.

* Move or rename the file.

File Data Authorities

Data authorities can be granted to a file. You
need:

¢ Read authority to open any file for input,
compile a program using the file, or display
the file description.

e Add authority to add new records to the file.

e Update database file records to open a data-
base file for update.

¢ Delete authority to open a database file for
delete.

For files other than database and save files, the
add, update, and delete authorities are ignored.

Authorities Required for File
Operations

Table 2-4 on page 2-7 lists the file object
authority and the data authority required for file
functions. This is the same information that was
presented in the previous two sections, but it is
listed by function rather than by authority.

Table 2-4. Object Authority and Data Authority Required for File Operations

Object Object Object
Function Operational Existence Management Read Add Update Delete
Open, 1/0O, close filet X X X2 X3 X3
Compile a program using X X
the file description
Display file description X
Delete file X X
Save/restore X
Transfer ownership X X
Grant/revoke authority X X
Change file description X X
Move file X X
Rename file X X
Replace file X X X X

1 For device files that are not using spooling, you must also have object operational and all data authorities to

the device.
2 QOpen for output for database and save files.

3 Open for update or delete for database files.

Specifying Authorities When
Creating Files

When you create a file, you can specify public
authority through the AUT parameter on the create
command. Public authority is authority available
to any user who does not have specific authority
to the file or who is not a member of a group that
has specific authority to the file. That is, if the
user has specific authority to a file or the user is a
member of a group with specific authority, then
the public authority is not checked when a user
performs an operation to the file. Public authority
can be specified as:

e *LIBCRTAUT. All users that do not have spe-
cific user or group authority to the file have
authority determined by the library in which
the file is being created. The library value is
specified by the *CRTAUT command to estab-
lish a public authority for this library.

» *CHANGE. All users that do not have specific
user or group authority to the file have
authority to use the file. The *CHANGE value
is the default public authority. *CHANGE

grants any user object operational and all data
authorities.

e *USE. All users that do not have specific user
or group authority to the file have authority to
use the file. *USE grants any user object
operational and read data authority.

o *EXCLUDE. Only the owner, security officer,
users with specific authority, or users who are
members of a group with specific authority
can change or use the file.

e *ALL. All users that do not have specific user
or group authority to the file have all data
authorities along with object operational,
object management, and object existence
authorities.

o Authorization list name. An authorization list
is a list of users and their authorities. The list
allows users and their different authorities to
be grouped together.

You can use the Edit Object Authority
(EDTOBJAUT), Grant Object Authority
(GRTOBJAUT), or Revoke Object Authority
(RVKOBJAUT) commands to grant or revoke the
public authority of a file.

Chapter 2. File Processing 2-7

Sharing Files

By default, the system lets one file be used by
many users and more than one job at the same
time. The system allocates the file and its associ-
ated resources for each use of the file in such a
way that conflicting uses are prevented.

Within the same job, files can be shared if one
program opens the same file more than once or if
different programs open the same file. Even
though the same file is being used, each open
operation creates a new path from the program to
the data or device, so that each open represents
an independent use of the file.

Historically, the file sharing just discussed was the
limit of the file sharing available. However,
0S/400 data management support offers another
closer level of sharing within a job that allows
more than one program to share the same path to
the data or device.

This level of sharing is available by specifying the
SHARE parameter on the create file, change file,
and override file commands. Using the SHARE
parameter allows more than one program to share
the file status, positions, and storage area, and
can improve performance by reducing the amount
of main storage the job needs and by reducing the
time it takes to open and close the file.

The original program model is the set of func-
tions for compiling source code and creating high-
level language programs on the AS/400 system
before the Integrated Language Environment (ILE)
model was introduced. The ILE model is the set
of constructs and interfaces that provide a
common run-time environment and run-time
bindable application program interfaces (APls) for
all ILE-conforming high-level languages.

An open data path is the path through which all
input/output operations for the file are performed.
In the original program model, using the
SHARE(*YES) parameter lets two or more pro-
grams running in the same job share an open
data path (ODP). It connects the program to a
file. If not specified otherwise, every time a file is

2-8 AS/400 Data Management Guide

opened a new open data path is built. You can
specify that if a file is opened more than once and
an open data path is still active for it in the same
job, the active ODP for the file can be used with
the current open of the file, and a new open data
path does not have to be created. This reduces
the amount of time required to open the file after
the first open, and the amount of main storage
required by the job. SHARE(*YES) must be spec-
ified for the first open and other opens of the
same file for the open data path to be shared. A
well-designed (for performance) application will
normally do a shared open on database files that
will be opened in multiple programs in the same
job. Specifying SHARE(*YES) for other files
depends on the application.

In the ILE model, shared files are scoped either to
the job level or to the activation group level. An
activation group is a substructure of a run-time
job. It consists of system resources (storage for
program or procedure variables, commitment defi-
nitions, and open files) allocated to one or more
programs. An activation group is like a miniature
job within a job.

Shared files that are scoped to the job level can
be shared by any programs running in any acti-
vation group. Shared files that are scoped to the
activation group level can be shared only by pro-
grams running in the same activation group.

Sharing files allows you to have programs within a
job interact in ways that would otherwise not be
possible. However, you should read the consider-
ations for open, 1/O, and close in this section and
in the appropriate manuals for all the file types to
understand how this support works and the rules
programs must follow to use it correctly.

Note: Most high-level language programs
process an open or a close operation independent
of whether or not the file is being shared. You do
not specify that the file is being shared in the high-
level language program. You indicate that the file
is being shared in the same job through the
SHARE parameter. The SHARE parameter is
specified only on the create, change, and override
file commands. Refer to your appropriate lan-
guage manual for more information.

Open Considerations for Files
Shared in a Job

The following items should be considered when
opening a file that is shared in the same job by
specifying SHARE(*YES).

* You must make sure that when the shared file
is opened for the first time in a job, all the
open options that are needed for subsequent
opens of the file are specified. If the open
options specified for subsequent opens of a
shared file do not match those specified for
the first open of a shared file, an error
message is sent to the program. (You can
correct this by making changes to your
program to remove any incompatible options.)

For example, PGMA is the first program to
open FILE1 in the job and PGMA only needs
to read the file. However, PGMA calls PGMB
which will delete records from the same
shared file. Because PGMB will delete
records from the shared file, PGMA will have
to open the file as if it, PGMA, is also going to
delete records. You can accomplish this by
using the correct specifications in the high-
level language. (In order to accomplish this in
some high-level languages, you may have to
use file operation statements that are never
run. See your appropriate language manual
for more details.)

» Sometimes sharing a file within a job is not
possible. For example, one program may
need records from a file in arrival sequence
and another program may need the records in
keyed sequence. Or, you may use the same
file for printing output, but want the output

from each program to be produced separately.

In these situations, you should not share the
open data path. You would specify
SHARE(*NO) on the override command to
ensure that the file was not shared within the
job.

¢ If debug mode is entered with
UPDPROD(*NO) after the first open of a
shared file in a production library, subsequent
shared opens of the file share the original
open data path and allow the file to be
changed. To prevent this, specify
SHARE(*NO) on the override command

before opening files while debugging your
program.

* The use of commitment control for the first
open of a shared file, requires that all subse-
quent shared opens also use commitment
control.

« If you did not specify a library name in the
program or the override command (*LIBL is
used), the system assumes that the library list
has not changed since the last open of the
same shared file with *LIBL specified. If the
library list has changed, you should specify
the library name on the override command to
ensure that the correct file is opened.

» Overrides and program specifications speci-
fied on the first open of the shared file are
processed. Overrides and program specifica-
tions specified on subsequent opens, other
than those that change the file name or the
value specified on the SHARE or LVLCHK
parameters on the override command, are
ignored.

Input/Output Considerations for

A im a lak
u

Files Shared in a Job

The system uses the same input/output area for
all programs sharing the file, so the order of the
operations is sequential regardless of which
program does the operation. For example, if
Program A is reading records sequentially from a
database file and it reads record 1 just before
calling Program B, and Program B also reads the
file sequentially, Program B reads record 2 with
the first read operation. If Program B then ends
and Program A reads the next record, it receives
record 3. If the file was not being shared,
Program A would read record 1 and record 2, and
Program B would read record 1.

For device files, the device remains in the same
state as the last I/O operation.

For display and ICF files, programs other than the
first program that opens the file may acquire more
display or program devices or release display or
program devices already acquired to the open
data path. All programs sharing the file have
access to the newly acquired devices, and do not
have access to any released devices.

Chapter 2. File Processing 2-9

Close Considerations for Files
Shared in a Job

The processing done when a program closes a
shared file depends on whether there are other
programs currently sharing the open data path. If
there are other programs, the main function that is
performed is to detach the program requesting the
close from the file. For database files, any record
locks held by the program are also released. The
program will not be able to use the shared file
unless it opens it again. All other programs
sharing the file are still attached to the ODP and
can perform |I/O operations.

If the program closing the file is the last program
sharing the file, then the close operation performs
all the functions it would if the file had not been
opened with the share option. This includes
releasing any allocated resources for the file and
destroying the open data path.

The function provided by this last close operation
is the function that is required for recovering from
certain run-time errors. If your application is
written to recover from such errors and it uses a
shared file, this means that all programs that are
attached to the file when the error occurs will have
to close the file. This may require returning to
previous programs in the call stack and closing
the file in each one of those programs.

Allocating File Resources

When a high-level language program uses a file,
several operations require that the system allocate
the resources needed to perform that operation.
This is generally done to ensure that multiple
users do not use the file in conflicting ways. For
example, the system will not allow you to delete a
file while any application program is using it. This
is prevented because when the file was opened,
the system obtained a lock on the file. The delete
file operation also attempts to get a lock on the file
and is unsuccessful because the program using
the file still has the lock from when the file was
opened, and the locks conflict.

When you write a high-level language program,
you should be aware of what resources are allo-

2-10 AS/400 Data Management Guide

cated for each file type. Normally, the system will
perform the allocation whenever an operation is
requested that requires it. For example, the
resources for each file used in a program are allo-
cated when the file is opened. If you prefer to
ensure that all the resources that are needed by a
program are available before the program is run,
you may use the Allocate Object (ALCOBJ) CL
command in the job prior to running the program.
In particular, the ALCOBJ command can allocate
database files and most devices.

Examples of operations that require resource allo-
cation are:

e Open
e Acquire
 Starting a program on a remote system

The file resources that must be allocated depend
on the type of file and the operation being per-
formed. File resources consist of the following:

¢ Open

— For printer and diskette files that are
spooled (SPOOL(*YES)), the file
resources include the file description, the
specified output queue, and storage in the
system for the spooled data. Because the
data is spooled, the device need not be
available.

— For database files, the file resources
consist of the entire file, including the file,
member, data, and the associated access
path.

— For printer and diskette files that are not
spooled (SPOOL(*NO)) as well as for tape
files, display files, and some ICF files, the
file resources include the file description
and the device. For ICF files that use
APPC, APPN*, or intrasystem communica-
tions, the file resources include the file
description and the session resources
associated with the device.

— For save files, the file resources consist of
the entire file, including the file and data.

— For DDM files, the file resources include
the file description and the session
resources associated with the device.

¢ Acquire operation

For display files and ICF files not using
APPC/APPN, or intrasystem communications,
the device is allocated as a resource. For ICF
files using APPC/APPN, or intrasystem com-
munications, resources include the session
resources associated with the device.

» Starting a program on a remote system

Session resources needed for APPC and
APPN.

When allocating resources, the system waits for a
predefined time if the resources are not imme-
diately available. If the resources do not become
available within the time limit, an error is gener-
ated. If you are using the ALCOBJ command, the
command fails. If your program is performing a
file operation, that operation fails and an error
message is sent to the program message queue.
You may attempt to use the error handling func-
tions of your high-level language to try the opera-
tion again. For example, if an open operation fails
because another job is using the device associ-
ated with the file, you could retry the open opera-
tion a specified number of times, in the hope that
the other job would finish with the device and your
program would then be able to use it.

The length of time that the system waits when
allocating resources is specified on the ALCOBJ
command and on the WAITFILE parameter of the
CL command used to create the file. If the
ALCOBJ command is used prior to running a
program, then the value of the WAITFILE param-
eter does not matter, because the resources will
be available.

The following chart describes the values allowed
for the WAITFILE parameter:

Values Definition

*IMMED This value specifies that no
wait time is allowed. An
immediate allocation of the
file resources is required.

*CLS The job default wait time is

used as the wait time for the
file resources to be allocated.

Definition

Specify the maximum number
of seconds that the program
is to wait for the file resources
to be allocated. Valid values
are 1 through 32767 (32 767
seconds).

Values
number-of-seconds

If your application has error handling procedures
for handling device errors occurring on device
files, you should specify a value of something
other than *IMMED to allow the system to recover
from the error. The allocation of resources
requested by your program on an open or acquire
operation that allows your program to recover from
the error will not be successful until the system
recovery procedures have been completed for the
device.

Opening Files

When an application wants to use a file, it does so
by referring to that file by name. The file
description for that file will then control how the
program and the system will interact.

An application program has an option as to how
the file description is used. The program may
choose to use the description as it currently exists.
In this case, the system uses the file description
as is, without any change. A number of parame-
ters contained in a file description can be
changed, however. Therefore, the second option
the application has is to change some or all of
these parameters. A change made to a file
description can be permanent or temporary. Per-
manent changes are discussed in the System
Concepts manual and the appropriate device
manual.

Temporary changes can provide greater flexibility
to the application. Temporary changes are made
when the program is first establishing a path to
the file by opening the file. Temporary changes
can be made in one of two ways:

» By information that is specified within the
program itself and which is passed as param-
eters on the open operation

» By using override CL commands in the input
stream that is used to set up the run-time
environment for the application

Chapter 2. File Processing 2-11

The ability to use the first way depends very much
on which programming language is used to write
the program. Some programming languages do
not allow you to control the open process to any
great extent. These languages do the open
process more or less automatically and control
what information gets passed. Other languages
allow you to have greater control over the open
process.

The second option can be used regardless of
which programming language you use. Override
CL commands are provided for each file type. By
including override commands with the application,
you may temporarily change the file description in
a file that the program wants to use.

Both options can be used together. Some param-
eters can be changed by information contained in
the application while others can be changed by
using an override command. The same param-
eter may be changed from both places. The oper-
ating system follows this order when making
temporary changes to a file:

1. The file description provides a base of infor-
mation.

2. Change information received from the applica-
tion during the open process is applied first to
the base information.

3. Change information found in the override
command is applied last. If the same informa-
tion is changed from both places, the override
has precedence.

Temporary changes are seen only by the applica-
tion that causes the change to be made. The file,
as seen by another application, remains
unchanged. In fact, two applications may use the
same file at the same time, and each may change
it temporarily according to its needs. Neither
application is aware the other has made a tempo-
rary change. Figure 2-1 on page 2-13 and
Figure 2-2 on page 2-14 illustrate the permanent
and temporary change processes.

Once an application establishes a connection
between itself and the file by opening the file, it
can then proceed to use the file for either input or
output operations. In the case of a database file,
the open process establishes a path between the
application and the actual database file. For
device files, a path is established between the
application and the actual device, or to a spooled

2-12 AS/400 Data Management Guide

file if the spooling attribute is active for the device
file. In all cases, the application is connected to
what it wants to use, and those connections deter-
mine what input or output operations are valid.
Not all operations are valid with all file types. The
application must be aware of what file types it
uses and then use only those operations which
are valid for those types.

Detecting File Description
Changes

When a program that uses externally described
files is compiled, the high-level language compiler
extracts the record-level and field-level
descriptions for the files referred to in the program
and makes those descriptions part of the compiled
program. When you run the program, you can
verify that the descriptions with which the program
was compiled are the current descriptions.

The system assigns a unique level identifier for

each record format when the file it is associated
with is created. The system uses the following

information to determine the level identifier:

¢ Record format name

¢ Field name

» Total length of the record format

¢ Number of fields in the record format

¢ Field attributes (for example, length and
decimal positions)

e Order of the field in the record format

Display, printer, and ICF files may also use the
number of and order of special fields called indica-
tors to determine the level identifier.

If you change the DDS for a record format and
change any of the items in the preceding list, the
level identifier changes.

To check the record format identifiers when you
run the program, specify LVLCHK(*YES) on the
create or change file commands.

The level identifiers of the file opened and the file
description that is part of the compiled program
are compared when the file is opened and
LVLCHK(*YES) is specified. The system does a
format-by-format comparison of the level identi-
fiers. If the identifiers differ or if any of the
formats specified in the program do not exist in

Before Change

File Z

P1 = PAGE

All Applications
See the Parameter
P1 Value of PAGE

v

Application
Program
N

Application
Program

Application
Program
1

Figure 2-1. Permanently Changing a File

the file, a message is sent to the program to iden-
tify the condition.

When the identifiers differ; this means that the file
format has changed. If the changes affect a field
that your program uses, you must compile the
program again for it to run properly. If the
changes do not affect the fields that your program
uses, you can run the program without compiling
again by entering an override command for the file
and specifying LVLCHK(*NO). Specifying
LVLCHK(*NO) causes the system to omit the level
identifier check when the file is opened. For
example, a field is added to the end of a record
format in a database file, but the program does
not use the new field. You can enter the Override
with Database File (OVRDBF) command with

After Change

Change command used to
change P1 to END

File Z l

P1 = END

All Applications
See the Parameter
P1 Value of END

v

Application
Program
N

Application
Program

Application
Program
1

RSLH143-2

LVLCHK(*NO) to enable the program to run
without being compiled again.

There are several CL commands available to you
to check the changes. You can use the Display
File Field Description (DSPFFD) command to
display the record-level and field-level descriptions
or, if you have the source entry utility (SEU), you
can display the source file containing the DDS for
the file. The format level identifier defined in the
file can be displayed by the Display File
Description (DSPFD) or the DSPFFD commands.
The format level identifier which was used when
the program was created can be displayed by the
Display Program References (DSPPGMREF)
command.

Chapter 2. File Processing 2-13

Application 1
Override CL command
changes parameter P2
to END
Application program
Open changes
parameter P1
to QRT
v
Opened file
P1 = QRT
P2 = END |«
P3 = 30

Application 2
Override CL command
changes parameter P2
to IMD
Application program
Open changes
parameter P3
to 10
v
Opened file
P1 = RPT
> P2 = IMD
P3 =10

File
P1 = RPT
P2 = NEXT

P3 =30

RSLH196-1

Figure 2-2. Temporarily Changing a File

There are also some changes to a file description
that will not cause an error when the file is
opened. These happen because the record
format identifiers did not change or because your
program does not use the changed formats.
Formats can be added to or removed from a file
without affecting existing programs that do not use
the added or deleted formats.

Even though the level identifier does not change,
some DDS functions that you add or delete could
require changes in the logic of your program. You
should review the functions you added or deleted
to determine whether changes are required to the
program logic.

Normally, the use of LVLCHK(*YES) is a good file

integrity practice. The use of LVLCHK(*NO) can
produce results that cannot be predicted.

2-14 AS/400 Data Management Guide

Open and I/0 Feedback Area

The system keeps track of the status of a file in
feedback areas once it is successfully opened. As
operations are performed on a file, these feedback
areas are updated to reflect the latest status.
These feedback areas give you greater control
over applications and provide important informa-
tion when errors occur.

The feedback areas are established at open time,
and there is one feedback area for each open file.
One exception is for shared files, which share
feedback areas as well as the data path between
the program and the file. For more information on
shared opens, see “Sharing Files” on page 2-8.

Some high-level languages on the system allow
you to access the status and other information
about the file against which operations are being

performed. There are two feedback areas of
interest to you:

* Open feedback area

This area contains information of a general
nature about the file after it has been success-
fully opened. Examples include the name and
library of the file and the file type. See “Open
Feedback Area” on page A-1 for a complete
list of the information that can be retrieved
from the open feedback area. In addition to
general information about the file, file-specific
information is also contained in the open feed-
back area after the file is opened. The appli-
cable fields depend on the file type.

The open feedback area also contains infor-
mation about each device or communications
session defined for the file.

e Input/output feedback area

There are two sections of the 1/0 feedback
area:

— Common area

This area contains information about /0
operations that were performed on the file,
including the number of operations and
the last operation. See “I/O Feedback
Area” on page A-11 for a complete list of
the information that can be retrieved from
the common 1/O feedback area.

— File-dependent feedback area

This area contains file-specific information
for display, database, printer, and ICF
files, for example, the major and minor
return code and amount of data received
from the device. See “I/O Feedback Area
for ICF and Display Files” on page A-15,
“I/O Feedback Area for Printer Files” on
page A-18, and “I/O Feedback Area for
Database Files” on page A-18 for a com-
plete list of the information that can be
retrieved from the file-dependent 1/O feed-
back area.

The above information areas can be useful to you.
For example, when an error occurs with a device
file, the program could determine predefined error
handling operations based on the major/minor
return code in the file-dependent feedback area.

If data is being received from a communications
device and the application on the other end sends

an error, the program could determine that the
next operation should be to wait until the next
block of data is sent indicating the error. Possibly,
the next operation may be to close the file and
end the conversation with the application on the
other side or wait for the next request from the
application.

Another way might include detecting what type of
file was actually opened to determine the type of
operations that are allowed. If the file type is
printer, only output operations would be allowed.

Error Handling

This section describes error conditions that an
application program may encounter during its
operation and the provisions that can be made
within the program itself to attempt to deal with
these conditions. The CL Programmer’s Guide
discusses how to use the debug functions to
resolve unexpected errors encountered in the
application programs. The chapter on handling
problems in the Operator’s Guide describes the
programs that are available for analyzing and
reporting system errors and hardware failures.

Errors can be detected when a file is opened,
when a program device is acquired or released,
during 1/O operations to a file, and when the file is
closed. When appropriate, the system will auto-
matically try to run a failing operation again, up to
a retry limit. When a retry is successful, neither
operator nor program action is required. Errors
that can affect the processing of the program may
be reported in any or all of the following ways:

» A notify, status, diagnostic, or escape
message may be sent to the program
message queue of the program using the file.
These messages may also appear in the job
log, depending on the message logging level
set for the job.

A file status code may be returned by the
high-level language.

* A major/minor return code is returned in the
I/O feedback area for ICF, display, and printer
files.

* A notify, status, diagnostic, or escape
message may be sent to the operator
message queue (QSYSOPR) or the history
message queue (QHST).

Chapter 2. File Processing 2-15

¢ Information regarding the error may be saved
in the system error log for use by the problem
analysis and resolution programs.

* An alert message may be sent to an operator
at another system in the network.

e The normal program flow may be interrupted
and control may be transferred to an error-
handling subroutine, or other language oper-
ations may occur. For additional information
about how to handle run-time errors, see the
appropriate high-level language manual.

Only some of these are significant to a program
that is attempting error recovery.

Not all file errors allow programmed error
recovery. Some errors are considered permanent;
that is, the file, device, or program cannot work
until some corrective action is taken. This might
involve resetting the device by varying it off and
on again, or correcting an error in the device con-
figuration or the application program. Some mes-
sages and return codes are used to inform the
user or the application program of conditions that
are information rather than errors, such as change
in the status of a communications line, or system
action taken for an unexpected condition. In many
cases, it is possible for the application program to
test for an error condition and take some pre-
planned recovery action which allows the program
to continue without intervention from the operator.

Messages and Message Monitors

Displayed messages are the primary source of
information for an operator or a programmer who
is testing a new application. A message usually
contains more specific information than the file
status code, the indicators, or the major/minor
return code. The control language allows mes-
sages to be monitored so that the CL program can
intercept a message and take corrective action.
See the CL Programmer’s Guide for more infor-
mation about message types and message moni-
tors. In most high-level languages, either the file
status code or major/minor return code (described
in the following section) is a more convenient
source of information.

Message numbers are assigned in categories to
make it easier for a program to monitor for any of
a group of related messages. Table 2-5 shows

2-16 AS/400 Data Management Guide

the message number ranges assigned for file error
messages.

Table 2-5. OS/400 Data Management Message
Number Ranges

Message IDs Operation Message Type
CPF4001-40FF Open Diagnostic and
status.
CPF4101-43FF Open Escapes that make
the file unusable.
CPF4401-44FF Close Diagnostic and
status.
CPF4501-46FF Close Escapes that make
the file unusable.
CPF4701-48FF 1/0, Acquire, Notify with a default
and Release reply of cancel,
status and escapes
that do not make
the file or device
unusable.
CPF4901-49FF 1/0, Acquire, Notify with a default
and Release reply of ignore or
go.
CPF5001-50FF I/0, Acquire, Notify with a default
and Release reply of cancel.
CPF5101-53FF 1/O, Acquire, Escapes that make
and Release the file or device
unusable.
CPF5501-56FF I/0, Acquire, Escapes that make
and Release the file or device

unusable.

Some status messages, CPF4018 for example,
are preceded by a diagnostic message that pro-
vides additional information. Diagnostic messages
may be kept in the job log, depending on the
message logging level of the job. If a CL program
monitors for CPF4018, CPF5041, or similar mes-
sages, it can retrieve the accompanying diagnostic
message from the program message queue.

If an error occurs for which an escape message is
issued and the message is not monitored, your
program will be ended and the message displayed
for the operator. Status messages may also be
monitored, but if they are not monitored, the
program continues. Most high-level languages
except CL monitor for all the file errors that are
likely to be encountered, and provide some
standard recovery. Depending on the severity of
the error, the high-level language may simply end
the program and issue a message of its own.
Alternatively, the application programmer may
code an error recovery routine to handle errors
that are anticipated in that particular application.

Within these error-handling routines, it is usually
necessary to examine the file status or
major/minor return codes to determine the cause
of the error. The manuals for the language you
are using explain how to access file status and
major/minor return codes. The language manuals
also explain the file status codes as they are
defined for each language.

Major/Minor Return Codes

Major/minor return codes are used to report errors
and certain status information for ICF, display, and
printer files. They are not used for other files.
They are usually stated as four characters: the
first two referring to the major code and the
second two referring to the minor code. The
major code indicates the general type of error, and
the minor provides further detail. Minor codes,
except zero, have the same or a similar meaning,
regardless of the major code with which they are
combined.

The application program can test the return code
after each I/O operation. If the major return code
is 00, the operation completed successfully and
the minor return code contains status information
that indicates whether a read or a write operation
should be performed next. A major return code of
04 or above indicates that an error occurred. The
program may test for any specific errors for which
programmed recovery is attempted. The applica-
tion program may test for a specific condition by
comparing the major and minor codes as a unit, or
may identify a class of conditions by testing the
major code alone.

Most major/minor return codes are accompanied
by any one of several message numbers, for
which the typical recovery action is similar. File
status codes are defined by the individual lan-
guages and may be set based on the major/minor
return codes.

Table 2-6 defines the major return codes. See
the Guide to Programming Displays for specific
definitions of the major and minor return codes as
they are used for display files and the message
numbers associated with each. Similar specific
definitions for printer files and each of the commu-
nications types valid on an ICF file can be found
in the Guide to Programming for Printing and
manuals for each communications type.

Table 2-6. Major Return Code Definitions

Code Definition

00 The operation requested by your program
completed successfully. The minor includes
state information, such as change direction.

02 Input operation completed successfully, but
job is being ended (controlled). The minor
includes state information.

03 Successful input operation, but ho data was
received. The minor includes state informa-
tion.

04 Error occurred because an output operation
was attempted while data was waiting to be
read.

08 An acquire operation failed because the
device has already been acquired or the
session has already been established.

11 A read-from-invited-program-devices opera-
tion failed because no device or session
was invited.

34 An input exception occurred. The data

length or record format was not acceptable
for the program.

80 A permanent (unrecoverable) system or file
error occurred. Programmer action is
required to correct the problem.

81 A permanent (unrecoverable) device or
session error occurred during an 1/O opera-
tion.

82 A device or session error occurred during an
open or acquire operation. Recovery may
be possible.

83 A device or session error occurred during an
I/O operation. Recovery may be possible.

Actions for Error Recovery

The following sections describe the error recovery
action that is appropriate for each group of major
return codes.

Normal Completion: A major/minor return
code of 0000 indicates that the operation
requested by your program was completed suc-
cessfully. Most of the time, no message is issued.
In some cases, a diagnostic message might be
used to inform the user of some unusual condition
that the system was able to handle, but which
might be considered an error under some condi-
tions. For example, a parameter that is not valid
might be ignored, or some default action taken.

Chapter 2. File Processing 2-17

For communications devices, a major return code
of 00, indicating successful completion with data
received, is accompanied by a minor return code
that indicates what operation the application
program is expected to perform next. The
nonzero minor does not indicate an error. No
message is issued.

Completion with Exceptions: Several
rather specific major return codes have been
assigned to conditions for which a specific
response from the application program is appro-
priate.

A major return code of 02 indicates that the
requested input operation completed successfully,
but the job is being ended (controlled). The appli-
cation program should complete its processing as
quickly as possible. The controlled cancel is
intended to allow programs time to end in an
orderly manner. If your program does not end
within the time specified on the ENDJOB
command, the job will be ended by the system
without further notice.

A major return code of 03 indicates that an input
operation completed successfully without trans-
ferring any data. For some applications, this
might be an error condition, or it might be
expected when the user presses a function key
instead of entering data. It might also indicate
that all the data has been processed, and the
application program should proceed with its com-
pletion processing. In any case, the contents of
the input buffer in the program should be ignored.

A major/minor code of 0309 is used to indicate
that no data was received and the job is being
ended (controlled). A major/minor code of 0310
indicates that there is no data because the speci-
fied wait time has ended. Other minor return
codes accompanying the 02 or 03 major code are
the same as for a 00 major code, indicating com-
munications status and the operation to be per-
formed next.

A major return code of 04 indicates that an output
exception occurred. Specifically, your program
attempted to send data when there was data
waiting to be received. This is probably the result
of not handling the minor return code properly on
the previous successful completion. Your program
can recover by simply receiving the incoming data
and then repeating the write operation.

2-18 AS/400 Data Management Guide

A major return code of 34 indicates that an input
exception occurred. The received data was either
too long or incompatible with the record format.
The minor return code indicates what was wrong
with the received data, and whether the data was
truncated or rejected. Your program can probably
handle the exception and continue. If the data
was rejected, you may be able to read it by speci-
fying a different record format.

Two other return codes in this group, 0800 and
1100, are both usually the result of application
programming errors, but are still recoverable.
0800 indicates that an acquire operation failed
because the device has already been acquired or
the session has already been established. 1100
indicates that the program attempted to read from
invited devices with no devices invited. In both
cases, the request that is not valid is ignored, and
the program may continue.

No message is issued with a 02 major code or
most minor codes with the 03 major code, but the
other exceptions in this group are usually accom-
panied by a message in the CPF4701-CPF47FF
or CPF5001-CPF50FF range.

Permanent System or File Error: A
major return code of 80 indicates a serious error
affecting the file. The application program must
close the file and reopen it before attempting to
use it again, but recovery is unlikely until the
problem causing the error is found and corrected.
To reset an error condition in a shared file by
closing it and opening it again, all programs
sharing the open data path must close the file.
This may require returning to previous programs in
the call stack and closing the shared file in each
of those programs. The operator or programmer
should refer to the text of the accompanying
message to determine what action is appropriate
for the particular error.

Within this group, several minor return codes are
of particular interest. A major/minor code of 8081
indicates a serious system error for which an
APAR probably will be required. The message
sent with the major/minor return code may direct
you to run the Analyze Problem (ANZPRB)
command to obtain more information.

A major/minor code of 80EB indicates that incor-
rect or incompatible options were specified in the

device file or as parameters on the open opera-
tion. In most cases you can close the file, end the
program, correct the parameter that is not valid
with an override command, and run the program
again. The override command affects only the job
in which it is issued. It allows you to test the
change easily, but you may eventually want to
change or re-create the device file as appropriate
to make the change permanent.

Permanent Device or Session Error on

I/0 Operation: A major return code of 81
indicates a serious error affecting the device or
session. This includes hardware failures affecting
the device, communications line, or communica-
tions controller. It also includes errors due to a
device being disconnected or powered off
unexpectedly and abnormal conditions that were
discovered by the device and reported back to the
system. Both the minor return code and the
accompanying message provide more specific
information regarding the cause of the problem.

Depending on the file type, the program must
either close the file and open it again, release the
device and acquire it again, or acquire the session
again. To reset an error condition in a shared file
by closing it and opening it again, all programs
sharing the open data path must close the file. In
some cases, the message may instruct you to
reset the device by varying it off and on again. It
is unlikely that the program will be able to use the
failing device until the problem causing the error is
found and corrected, but recovery within the
program may be possible if an alternate device is
available.

Some of the minor return codes in this group are
the same as those for the 82 major return code.
Device or line failures may occur at any time, but
an 81 major code occurs on an I/O operation.
This means that your program had already estab-
lished a link with the device or session. There-
fore, some data may have been transferred, but
when the program is started again, it starts from
the beginning. A possible duplication of data
could result.

Message numbers accompanying an 81 major

code may be in the range indicating either an I/O
or a close operation. A device failure on a close
operation simply may be the result of a failure in

sending the final block of data, rather than action
specific to closing the file. An error on a close
operation may result in the file being left partially
closed. Your error recovery program should
respond to close failures with a second close
operation. The second close will always com-
plete, regardiess of errors.

Device or Session Error on Open or

Acquire Operation: A major return code of
82 indicates that a device or session error
occurred during an open or acquire operation.
Both the minor return code and the accompanying
message will provide more specific information
regarding the cause of the problem.

Some of the minor return codes in this group are
the same as those for the 81 major return code.
Device or line failures may occur at any time, but
an 82 major code indicates that the device or
session was unusable when your program first
attempted to use it. Thus no data was trans-
ferred. The problem may be the result of a config-
uration or installation error.

Depending on the minor return code, it may be
appropriate for your program to recover from the
error and try the failing operation again after some
waiting period. The number of times you try
should be specified in your program. It may also
be possible to use an alternate or backup device
or session instead.

Message numbers accompanying an 82 major
code may be in the range indicating either an
open or an acquire operation. If the operation
was an open, it is necessary to close the partially
opened file and reopen it to recover from the
error. If the operation was an acquire, it may be
necessary to do a release operation before trying
the acquire again. In either case, the file wait time
should be specified long enough to allow the
system to recover from the error.

Recoverable Device or Session Errors

on I/O Operation: A major return code of 83
indicates that an error occurred in sending data to
a device or receiving data from the device.
Recovery by the application program is possible.
Both the minor return code and the accompanying
message provide more specific information
regarding the cause of the problem.

Chapter 2. File Processing 2-19

Most of the errors in this group are the result of
sending commands or data that are not valid to
the device, or sending valid data at the wrong time
or to a device that is not able to handle it. The
application program may recover by skipping the

Related Information on File Types

Refer to the following manuals for more informa-
tion on the file types discussed in this chapter:

failing operation or data item and going on to the e Database files: Database Guide
next one, or by substituting an appropriate default. « Display files: Guide to Programming Displays
There may be a logic error in the application. e DDM files: DDM Guide

e |CF files: ICF Programmer’s Guide

 Printer files: Guide to Programming for
Printing

» Save files: Advanced Backup and Recovery
Guide

¢ Tape and diskette files: Guide to Program-
ming for Tape and Diskette

2-20 AS/400 Data Management Guide

Chapter 3. Overrides and File Redirection

This chapter contains Product-Sensitive Program-
ming Interface and Associated Guidance Informa-
tion.

Overrides are used to temporarily change a file
name, a device name or remote location hame
associated with the file, or some of the other attri-
butes of a file. Override commands may be
entered interactively from a display station or as
part of a batch job. They may be included in a
control language (CL) program, or they may be
issued from other programs by calling the program
QCMDEXC. Regardless of how they are issued,
overrides remain in effect only for the job,
program, or display station session in which they
are issued. Furthermore, they have no effect on
other jobs that may be running at the same time.

Overrides are particularly useful for making minor
changes to the way a program functions or for
selecting the data on which it operates, without
having to recompile the program. Their principal
value is in allowing you to use general purpose
programs in a wider variety of circumstances.
Examples of items where overrides may be used
are:

» Changing the name of the file to be processed

* Selecting the database file member to be pro-
cessed

¢ Indicating whether output is to be spooled

e Directing output to a different tape unit

¢ Changing printer characteristics such as lines
per inch and number of copies

¢ Selecting the remote location to be used with
an ICF file

¢ Changing the characteristics of a communica-
tions session

It is also possible to use overrides to direct data
input or output to a device of a different type; for
example, to send data that was intended for a
diskette to a printer instead. This use of overrides
requires somewhat more foresight than the over-
ride applications listed above, because the
program must be able to accommodate the dif-
ferent characteristics of the two devices involved.
The special considerations required for overrides
that change the file type are discussed in “File
Redirection” on page 3-17.

© Copyright IBM Corp. 1991, 1993

There are two types of overrides:

 File overrides (where you override file names
or the attributes of a file).

¢ Program device entry overrides (where you
override the attribute of an ICF file that pro-
vides the link between the application and
each of the remote systems or devices with
which your program communicates).

Overriding Files

When you create an application program, files are
associated with it by the file names specified in
the program. The system lets you override these
file names or the attributes of the specified file
when you compile a program or run a program.
The system supplies three override functions:
applying overrides, deleting overrides, and dis-
playing overrides. You can process override func-
tions for files using the following CL commands:

DLTOVR
Delete Override: Deletes one or more file
overrides (including message file overrides)
that were previously specified in a call level.

DSPOVR
Display Override: Displays file overrides at
any active call level for a job.

OVRDBF
Override with Database File: Overrides
(replaces) the database file named in the
program, overrides certain parameters of a
database file that is used by the program, or -
overrides the file and certain parameters of the
file to be processed.

OVRDKTF
Override with Diskette File: Overrides
(replaces) the diskette file named in the
program, overrides certain parameters of a
diskette file that is used by the program, or
overrides the file and certain parameters of the
file to be processed.

OVRDSPF
Override with Display File: Overrides
(replaces) the display file named in the
program, overrides certain parameters of a
display file that is used by the program, or

3-1

overrides the file and certain parameters of the
file to be processed.

OVRICFF
Override with Intersystem Communications
Function File: Used to override the file named
in the program and override certain parameters
of the file being processed.

OVRMSGF
Override with Message File: Used to override
a message file used in a program. The rules
for applying the overrides in this command are
different from the other override commands.
For more information on overriding message
files, see the CL Programmer’s Guide.

OVRPRTF
Override with Printer File: Overrides (replaces)
the printer file named in the program, overrides
certain parameters of a printer file that is used
by the program, or overrides the file and
certain parameters of the file to be processed.

OVRSAVF
Override with Save File: Overrides (replaces)
the file named in the program, overrides
certain attributes of a file that is used by the
program, or overrides the file and certain attri-
butes of the file to be processed.

OVRTAPF
Override with Tape File: Overrides (replaces)
the file named in the program, overrides
certain attributes of a file that is used by the
program, or overrides the file and certain attri-
butes of the file to be processed.

Overrides may be used to change most, but not
all, of the file attributes that are specified when the
file is created. In some cases, attributes may be
specified in overrides that are not part of the ori-
ginal file definition. Refer to the command
descriptions in the CL Reference manual for
details.

Override commands can be scoped to either the
call level (the default) or to the job level. For an
explanation of call levels and the job level, see
“Job Level and Call Levels with Override
Commands” on page 3-4. Overrides that are
scoped to the call level remain in effect from the
time they are specified until they are replaced, or
deleted, or until the program in which they are
specified ends. Overrides that are scoped to the
job level remain in effect from the time they are

3-2 AS/400 Data Management Guide

specified until they are replaced, or deleted, or
until the job in which they are specified ends.

Overrides applied include any that are in effect at
the time a file is opened by an application
program, when a program that opens a file is
compiled, or when certain system commands are
used. (See “Applying Overrides When Using
High-Level Language Programs,” “Applying Over-
rides When Compiling a Program” on page 3-11 ,
and “Effect of Overrides on Some System
Commands” on page 3-12). Thus any overrides
that are to be applied must be specified either
before the file is opened by a program or before a
program that opens the file is compiled. It is not
necessary that overrides be supplied for every file
used in a program. Any file name for which no
override is supplied is used as the actual file
name.

Overriding a file is different from changing a file in
that an override does not permanently change the
attributes of a file. For example, if you override
the number of copies for a printer file by
requesting six copies instead of two, the file
description for the printer file still specifies two
copies, but six copies are printed. The system
uses the file override command to determine
which file to open and/or what its file attributes
are.

Handling overrides for message files is different in
some respects from handling overrides for other
files. Only the name of the message file, not the
attributes, can be overridden. For more informa-
tion on message handling, refer to the CL
Programmer’s Guide.

Applying Overrides When Using
High-Level Language Programs

There are three different types of file overrides.
These are discussed in the following sections.

Overriding File Attributes: The simplest
form of overriding a file is to override some attri-
butes of the file. File attributes are built as a
result of the following:

* Create file and add member commands. Ini-
tially, these commands build the file attributes.

* Program using the files. At compile time, the
user program can specify some of the file

attributes. (The attributes that can be speci-
fied depend on the high-level language in
which the program is written.)

* Override commands. At program run time,
these commands can override the file attri-
butes previously built by the merging of the
file description and the file parameters speci-
fied in the user program.

For example, assume that you create a printer file
OUTPUT whose attributes are:

» Page size of 60 by 80

¢ Six lines per inch

* Two copies of printed output
* Two pages for file separators
» Overflow line number of 55

The Create Printer File (CRTPRTF) command
looks like this: :

CRTPRTF FILE(QGPL/OUTPUT) SPOOL(*YES) +
PAGESIZE(60 80) LPI(6) COPIES(2) +
FILESEP(2) OVRFLW(55)

The printer file OUTPUT is specified in your appli-
cation program with an overflow line number of 58

and a page size of 66 by 132.

Override Command

Figure 3-1. Overriding File Attributes

However, before you run the application program,
you want to change the number of copies of
printed output to 3 and the overflow line to 60.
The override command looks like this:

OVRPRTF FILE(OUTPUT) COPIES(3) OVRFLW(60)

Then you call the application program, and three
copies of the output are printed.

When the application program opens the OUTPUT
file, the file-specified attributes, program-specified
attributes, and override-specified attributes are
merged to form the open data path. The open
data path is used when the program is run. The
file-specified overrides are merged with the
program-specified attributes first. Then these
merged attributes are merged with the override
attributes. In this example, when the OUTPUT file
is opened and output operations are performed,
spooled output will be produced with a page size
of 66 by 132, six lines per inch, three copies, two
file separator pages, and overflow at 60 lines.

Figure 3-1 explains this example.

— Open Data Path

SPOOL(*YES)
COPIES(3) Override-Specified | PAGESIZE(66 132)
OVERFLW(60) Attributes LPI(6)
COPIES(3)
FILESEP(2)
l OVRFLW(60)
Program A
PAGESIZE(66 132) Program-Specified |
OVRFLW(58) Attributes
. A
Open OUTPUT
. Attributes
are
l Merged
File OUTPUT
SPOOL(*YES)
PAGESIZE(60 80)
LPI(6) File-Specified
COPIES(2) Attributes
FILESEP(2)
OVRFLW(55)

RV2H087-0

3-3

Chapter 3. Overrides and File Redirection

Overriding File Names or Types:

Another simple form of overriding a file is to
change the file that is used by the program. This
may be useful for files that have been moved or
renamed after the program has been compiled.

For example, you want the output from your appli-
cation program to be printed using the printer file
REPORTS instead of the printer file OUTPUT
(OUTPUT is specified in the application program).
Before you run the program, enter the following:

OVRPRTF FILE(OUTPUT) TOFILE(REPORTS)

The file REPORTS must have been created by a
CRTPRTF command before it can be used.

If you want to override to a different type of file,
you use the override command for the new type of
file. For example, if you are overriding a diskette
file with a printer file, use the Override with Printer
File (OVRPRTF) command.

Use the information under “File Redirection” on
page 3-17 to determine if files can be overridden
to another type of file.

Overriding File Names or Types and

File Attributes of the New File: This
form of overriding files is simply a combination of
overriding file attributes and overriding file names
or types. With this form of override, you can over-
ride the file that is to be used in a program and
you can also override the attributes of the over-
riding file. For example, you want the output from
your application program to be printed using the
printer file REPORTS instead of the printer file
OUTPUT (OUTPUT is specified in the application
program). In addition to having the application
program use the printer file REPORTS, you want
to override the number of copies produced to
three. Assume the file REPORTS was created
with the following command:

CRTPRTF FILE(REPORTS) SPOOL(*YES) +
PAGESIZE(68 132) LPI(8) OVRFLW(60) +
COPIES(2) FILESEP(1)

Before you run the program, type the following
command:

3-4 AS/400 Data Management Guide

OVRPRTF FILE(OUTPUT) TOFILE(REPORTS) COPIES(3)

Then call the application program, and three
copies of the output are produced using the printer
file REPORTS.

Note that this is not equal to the following two
override commands:

Override 1 OVRPRTF FILE(OUTPUT) TOFILE(REPORTS)
Override 2 OVRPRTF FILE(REPORTS) COPIES(3)

Only one override is applied for each call level for
an open of a particular file, so if you want to over-
ride the file that is used by the program and also
override the attributes of the overriding file from
one call level, you must use a single command. If
two overrides are used, override 1 will cause the
output to be printed using the printer file
REPORTS, but override 2 will be ignored.

Job Level and Call Levels with
Override Commands

Override commands can be scoped to the call
level (the default) or to the job level. A job is a
piece of work to be done by the system. An inter-
active job begins when a user signs on and ends
when a user signs off. In Figure 3-2 on page 3-5,
the job encompasses the job level and the pro-
grams running in call levels 1 to 3. Overrides
scoped to the job level remain in effect until they
are deleted, replaced, or until the job in which they
are specified ends. This is true regardless of the
call level in which the overrides were specified.
For example, an override that is issued in call
level 3 that is scoped to the job level remains in
effect when call level 3 is deleted.

Overrides can be scoped to the job level by speci-
fying OVRSCOPE(*JOB) on the override
command.

Call levels identify the subordinate relationships
between related programs when one program is
called from another program within a job. For
example:

Job

Job Level XXXXXX

Call Level1 PGM A
XXXXXX

CALL PGM B

PGM B
XXXXXX
TFRCTL PGM C

Call Level 2

PGM C
XXXXXX
CALL PGM D

PGM D
XXXXXX
RETURN

Call Level 3

Figure 3-2. Levels within a Job

Several commands, such as Work with Job
(WRKJOB), Work with Active Jobs
(WRKACTJOB), or Display Job (DSPJOB), have
options that allow you to display the call stack of
an active job. There is a one-to-one relationship
between a program displayed in the call stack and
the call level for that program. The first program
name displayed (at the top of the list) on the call
stack is the program at call level 1 for that job.
Call level 1 is the lowest call level for a job. The
second program name displayed is the program at
call level 2 for that job. The last program name
displayed is the program at the highest call level
for that job.

In the previous example, the TFRCTL to PGMC
causes PGMB to be removed from the call stack
and replaced by PGMC. A CALL command
causes another program to be placed in the call
stack. A RETURN command causes a program to
be removed from the stack.

Specific examples of each override can be found
throughout this chapter. The job level and call
levels affect override processing by the following
general principles.

» Override commands that are scoped to the job
level remain in effect until they are replaced,
deleted, or until the job in which they are
specified ends. For more information on

deleting overrides, see “Deleting Overrides” on
page 3-12.

There can be only one active override for a
file at the job level. If more than one override
for the same file is scoped to the job level, the
most recent one is active.

Override commands that are scoped to the job
level apply to all programs that are running in
the job regardless of the call level in which the
overrides are specified.

An override command (scoped to the call
level) entered interactively exists at the call
level of the caller of that command processor.
For example, an override (scoped to the call
level) entered on the command entry display
cannot be deleted or replaced from a
command processor called from the command
entry display.

The call level of an override (scoped to the
call level) coded in a CL program is the call
level of the CL program.

An override (scoped to the call level) outside a
program in a batch job takes the call level of
the batch job command processor.

If an override command (scoped to the call
level) is run using a call to the QCMDEXC
program, the override takes the call level of
the program that called the QCMDEXC
program. For an example, see “CL Program
Overrides” on page 3-9.

Exits (ENDPGM, RETURN, or abnormal exits)
from a call delete overrides scoped to that call
level. However, they do not delete overrides
issued in that call level that are scoped to the
job level. For example, a RETURN command
deletes all overrides scoped to that call level.
Thus, overrides scoped to the call level in
called programs that end with a RETURN or
ENDPGM command do not apply to the
calling program. This is not true for programs
using the Transfer Control (TFRCTL)
command.

In Figure 3-3 on page 3-6, the RETURN
command deletes the first override in program
B, and FILE X is opened in program A.
However, the RETURN command does not
delete the second override because it is
scoped to the job level. FILE B is opened in
program A when program A processes the
Open FILE A command.

Chapter 3. Overrides and File Redirection 3-5

[
I
I
|
|
I

I
[

Program A
CALL PGM(B)

Program B

OVRDBF FILE(X) FILE(Y)

OVRDBF FILE(A) TOFILE(B) +
OVRSCOPE (*JOB)

Override 1
Override 2

RETURN
OPEN FILE X

OPEN FILE A
Figure 3-3. Job Level and Call Level Overrides

* The TFRCTL command causes one program
to be replaced by another program at the
same call level. The program, to which
control is transferred, runs at the same call
level as the program that contained the
TFRCTL command. An override command in
a program that transfers control to another
program is not deleted during the transfer of
control.

In Figure 3-4, override 2 in program A is
applied to the open file operation in program
C because the TFRCTL command keeps the
call level. FILE Y is opened. Override 1 in
program B is deleted when the RETURN
statement is processed. For another example,
see “Applying Overrides at the Same Call
Level” on page 3-7.

Program A

CALL PGM(B)

Program B

Override 1 OVRDBF FILE(Y) FILE(Z)
RETURN

Override 2 OVRDBF FILE(X) TOFILE(Y)

TFRCTL PGM(C)

Program C

OPEN FILE(X)
Figure 3-4. Overrides With the TFRCTL Command

3-6 AS/400 Data Management Guide

I
I
|
I
I
|

» Several overrides (possibly one per call level
and possibly one at the job level) to a single
file are allowed. They are applied by the
system in inverse call level order; any appli-
cable overrides at the job level are applied
last.

For an example of applying overrides in
inverse call level order, see “Applying Over-
rides from Multiple Call Levels” on page 3-7.

* You can protect an override from being over-
ridden by overrides at lower call levels and the
job level by coding SECURE(*YES) on it. For
an example, see “Securing Files” on
page 3-9.

* When overrides are applied, only one override
can be used from a call level or the job level
for any particular file. If two or more overrides
for the same file are requested at the same
call level or job level, the last override makes
the others obsolete. This is true even if the
override involves a name change, as the fol-
lowing example illustrates. It is really one file
that is being overridden, and therefore only
one override is allowed at each level.

In the following example, when the program
attempts to open FILE A, FILE A is overridden
with FILE B because of override 2. Because
only one override can be applied for each call
level, override 1 is ignored, and the file
opened by the program is FILE B.

Program A
Override 1 OVRDBF FILE(B) TOFILE(C)
Override 2

OVRDBF FILE(A) TOFILE(B)

OPEN FILE A

To open FILE C, replace the two Override with
Database File (OVRDBF) commands with the fol-
lowing command:

OVRDBF FILE(A) TOFILE(C)

This does not prevent applying an override at the
same call level or job level in which the file is
created. File attributes on the override take the
place of corresponding attributes on the file create
statement, regardless of which is encountered
first.

For another example, see “Applying Overrides at
the Same Call Level” on page 3-7.

Applying Overrides at the Same Call

Level: The TFRCTL command causes one
program to be replaced by another program at the
same call level. The program, to which control is
transferred, runs at the same call level as the
program that contained the TFRCTL command.
An override command in a program that transfers
control to another program is not deleted during
the transfer of control. In the following example,
program A transfers control to program B, and
program B runs in the same call level as program
A. The Override with Database File (OVRDBF)
command causes the file to be positioned at the
last record of the member when it is opened and
is used for both programs A and B.

CALL PGM(A)
Program A
OVRDBF FILE(INPUT) POSITION(*END)

(INPUT is opened and positioned at the last
record of the member and closed after pro-
cessing.)

TFRCTL PGM(B)
Program B

(INPUT is opened and positioned at the last
record of the member.)

When two overrides are entered for the same file
name at the same call level, the second override
replaces the first override. This allows you to
replace an override at a single call level, without
having to delete the first override (see “Deleting
Overrides” on page 3-12). For example:

Override 1 OVRDKTF FILE(QDKTSRC) LABEL(X)
CALL PGM(REORDER)
Override 2 OVRDKTF FILE(QDKTSRC) LABEL(Y)

CALL PGM(REORDER)

Assume that program REORDER uses the
diskette file QDKTSRC. Override 1 causes the

first call to program REORDER to use the source
file with a label of X for its processing. Override 2
causes the second call to program REORDER to
use the source file with a label of Y for its pro-
cessing.

Applying Overrides from Multiple Call

Levels: When you have more than one over-
ride for the same file at several levels (possibly
one per call level and possibly one at the job
level), the overrides are applied to the file in
inverse call level order. Any applicable overrides
at the job level are applied last.

If any overrides are scoped to the job level, the
final authority for any attribute is the job level. If
no overrides are scoped to the job level, the final
authority for any attribute is the lowest call level
which specifies that attribute.

For example, a user at a display station (call level
1) calls a CL program (call level 2) which then
calls an RPG program (call level 3). Any attri-
butes overridden in call level 3 are applied first,
any overrides in call level 2 are applied second,
any ovetrrides in call level 1 are applied third, and
any overrides at the job level are applied last.
Attributes that are not overridden are taken from
the RPG program, or finally, from the device file or
database file.

To prevent file overrides at lower call levels, see
“Securing Files” on page 3-9.

In this example, override 1 is issued in call level 1,
override 2 is issued in call level 2, and override 3
is issued in call level 3.

Override 1 OVRPRTF FILE(OUTPUT) COPIES(6) +
SPOOL (*YES)

CALL PGM(A)

Program A
OVRPRTF FILE(OUTPUT) COPIES(2) +

LPI(6) OVRSCOPE(*JOB)
CALL PGM(B)

Override 2

Program B
OVRPRTF FILE(OUTPUT) CPI(10)
CALL PGM(C)

Override 3

3-7

Chapter 3. Overrides and File Redirection

When program C opens the file OUTPUT, the
opened file has the following attributes:

COPIES(2) From Override 2
SPOOL(*YES) From Override 1
LPI(6) From Override 2
CPI(10) From Override 3

The attribute of COPIES(6) specified in override 1

(call level 1) is not used because override 2 is
scoped to the job level. Therefore, COPIES(2)
takes precedence.

In this example, override 1 is issued in call level 1;

override 2 is issued in call level 2.

Override 1 OVRDBF FILE(PAYROLL) MBR(CURRENT)

CALL PROG1

Program PROGH1

Override 2 OVRDBF FILE(INPUT) TOFILE(PAYROLL)

CALL PROG2

When program PROG2 is ready to open INPUT, it
opens PAYROLL instead (because of override 2).

Also, the member used for processing is
CURRENT (because of override 1).

When several overrides that override the file type

to be used by a program are applied, only the

attributes specified on the overrides of the same
type as the final file are applied. In the following
example, assume that program MAKEMASTER

attempts to open the diskette file DKA:

3-8 AS/400 Data Management Guide

Override 1 OVRDKTF FILE(PRTA) TOFILE(DKB) +

LABEL (DKFIRST)
CALL PGM(A)

Program A

Override 2 OVRPRTF FILE(DKA) TOFILE(PRTA) +

SPOOL (*YES)
CALL PGM(B)

Program B

Override 3 OVRDKTF FILE(PRTB) TOFILE(DKA) +

DEV(DKT02) LABEL(DKLAST)

Override 4 OVRDKTF FILE(DKA) TOFILE(DKC) +

DEV(DKT02) LABEL(DKTTST)
CALL PGM(C)

Program C

Override 5 OVRPRTF FILE(DKA) +

TOFILE(PRTB) +
SCHEDULE (*JOBEND)
CALL PGM(D)

Program D

Override 6 OVRDKTF FILE(DKA) +

VOL (MASTER)
CALL PGM(MAKEMASTER)

Program MAKEMASTER
(Program
MAKEMASTER
attempts to open file
DKA, but actually

opens the diskette file
DKB.)

In the preceding example, the file that program
MAKEMASTER actually opens is the diskette file
DKB because of the following reasons:

Override 6 (applied first) does not cause file
DKA to be overridden with any other file.
Override 5 (applied second) causes file DKA
to be overridden with printer file PRTB.
Override 4 is ignored at this level because
override 5 changed the file name to PRTB.
Override 3 (applied third) causes file PRTB to
be overridden with diskette file DKA.

Override 2 (applied fourth) causes file DKA to
be overridden with printer file PRTA.

Override 1 (applied last) causes file PRTA to
be overridden with diskette file DKB.

Therefore, the file that program MAKEMASTER
opens is the diskette file DKB. Because the file to
be opened is a diskette file, the attributes over-
ridden are only those specified on the Override
with Diskette File (OVRDKTF) commands:
VOL(MASTER) from override 6; DEV(DKT02) from
override 3; and LABEL(DKFIRST) from override 1.

The attributes specified on the Override with
Printer File (OVRPRTF) commands are ignored
(even though they might have been allowed on
the OVRDKTF commands). Refer to “File
Redirection” on page 3-17 for more information on
the effect of overrides that change the file type.

CL Program Overrides: If a CL program
overrides a file and then calls a high-level lan-
guage program, the override remains in effect for
the high-level language program. However, if a
high-level language program calls a CL program
that overrides a file, the override is deleted auto-
matically when control returns to the high-level
language program.

High-level language program:
CALL PGM(CLPGM1)

CL Program CLPGM1
OVRDKTF FILE(DK1) TOFILE(MSTOUT)

ENDPGM
High-level language program:

OPEN DK1

The file opened is DK1, not MSTOUT. This is
because the override in the CL program is deleted
when the CL program ends.

To perform an override from a high-level language
program, call the QCMDEXC program from the
high-level language program. The override speci-
fied on the QCMDEXC command, takes the call
level of the program that called QCMDEXC. High-
level language program:

CALL QCMDEXC PARM('OVRDKTF FILE(DK1) +

TOFILE(MSTOUT) ' 32)
OPEN DK1

|

I
|

The file opened is MSTOUT because of the over-
ride requested by the call to the QCMDEXC
program.

In an actual program, you might want to use data
supplied by the program as a parameter of the
override. This can be done by using program var-
iables in the call to QCMDEXC. For more infor-
mation on the use of program variables, refer to
the appropriate language manual.

Securing Files: On occasion, you may want
to prevent the person or program that calls your
program from changing the file names or attributes
you have specified. You can prevent additional
file overrides by coding the SECURE(*YES)
parameter on a file override command for each file
needing protection. This protects your file from
overrides at lower call levels and the job level.

The following shows an example of a protected
file:

Override 1 OVRPRTF FILE(PRINT1) SPOOL(*NO)
Override 2

MBR (N67)
CALL PGM(CHECK)

Program CHECK

OVRDBF FILE(INPUT) +
TOFILE(NEWEMP) MBR(N77) +
SECURE (*YES)

CALL PGM(EREPORT)

Override 3

Program EREPORT
(NEWEMP and PRINT1 are
opened.)
Override 4 OVRDBF FILE(INPUT) +
TOFILE(NEWEMP) MBR(N77)
CALL PGM(ELIST)

Program ELIST
(OLDEMP and PRINT1 are
opened.)

When program EREPORT is called, it attempts to
open the files INPUT and PRINT1. EREPORT
actually opens files NEWEMP, member N77.
Because override 3 specifies SECURE(*YES),
override 2 is not applied. When program ELIST is
called, it also attempts to open the files INPUT

3-9

Chapter 3. Overrides and File Redirection

OVRDBF FILE(NEWEMP) TOFILE(OLDEMP) +

and PRINT1. ELIST actually opens files
OLDEMP, member N67. Because override 4 has
the same name as override 3 and is at the same
call level as override 3, it replaces override 3.
Thus, the file is no longer protected from overrides
at lower call levels, and override 2 is applied for
program ELIST.

PRINT1 is affected only by override 1, which is in
effect for both programs EREPORT and ELIST.

Using a Generic Override for
Printer Files

The OVRPRTF command allows you to have one

override for all the printer files in your job with the

same set of values. Without the generic override,

you would have to do a separate override for each
of the printer files.

Following are specific examples of applying the
OVRPRTF command.

Applying OVRPRTF with *PRTF: The
OVRPRTF command can be applied to all printer
files by specifying *PRTF as the file name.

The OVRPRTF command with *PRTF is applied if
there is no other override for the printer file name
at the same call level. The following example
shows how *PRTF works:

Override 1 OVRPRTF FILE(OUTPUT) COPIES(6) +
LPI(6)
Override 2 OVRPRTF FILE(*PRTF) COPIES(1) +

LPI(8)
CALL PGM(X)

When program X opens the file OUTPUT, the
opened file has the following attributes:

COPIES(6) From Override 1
LPI(6) From Override 1

When program X opens the file PRTOUT (or any
printer file other than OUTPUT), the opened file
has the following attributes:

COPIES(1)
LPI(8)

From Override 2
From Override 2

3-10 AS/400 Data Management Guide

I
I
I
[

Applying OVRPRTF with *PRTF from

Multiple Call Levels: The following
example shows how printer-file overrides are
applied from multiple call levels using the *PRTF
value.

Program A
Override 1 OVRPRTF FILE(*PRTF) COPIES(1)
Override 2 OVRPRTF FILE(PRT2) COPIES(2)
Override 3 OVRPRTF FILE(PRT4) COPIES(2)

CALL PGM(B)

Program B

Override 4 OVRPRTF FILE(*PRTF) LPI(4)
Override 5 OVRPRTF FILE(PRT3) LPI(8)
Override 6 OVRPRTF FILE(PRT4) LPI(8)

CALL PGM(X)

When program X opens the file PRT1, the opened
file has the following attributes:

COPIES(1)
LPI(4)

From Override 1
From Override 4

Because no specific overrides are found for PRTT,
*PRTF overrides (1 and 4) are applied.

When program X opens the file PRT2, the opened
file has the following attributes:

COPIES(2)
LPI(4)

From Override 2
From Override 4

Because no specific override is found for PRT2 in
program B, override 4 is applied. In program A,
override 2 specifies PRT2 and is applied.

When program X opens the file PRT3, the opened
file has the following attributes:

COPIES(1)
LPI(8)

From Override 1
From Override 5

In program B, override 5 specifies PRT3 and is
applied. Because no specific override is found for
PRTS3 in program A, override 1 is applied.

When program X opens the file PRT4, the opened
file has the following attributes:

COPIES(2)
LPI(8)

From Override 3
From Override 6

In program B, override 6 specifies PRT4 and is
applied. In program A, override 3 specifies PRT4
and is applied.

Applying Overrides When
Compiling a Program

Overrides may be applied at the time a program is
being compiled for either of two purposes:

* To select the source file

» To provide external data definitions for the
compiler to use in defining the record formats
to be used on I/O operations

Overrides to the source file are handled just like
any other override. They may select another file,
another member of a database file, another label
for diskette or tape, or change other file attributes.

Overrides may also be applied to files that are
used within the program being compiled, if they
are being used as externally described files in the
program. These files are not opened at compile
time, and thus the overrides are not applied in the
normal manner. These overrides are used at
compile time only to determine the file name and
library that will be used to define the record
formats and fields for the program to use I/O oper-
ations. Any other file attributes specified on the
override are ignored at compile time. It is neces-
sary that these file overrides be active at compile
time only if the file name specified in the source
for the program is not the file name that contains
the record formats that the application needs.

The file name that is opened when the compiled
program is run is determined by the file name that
the program source refers to, changed by what-
ever overrides are in effect at the time the
program runs. The file name used at compile time
is not kept. The record formats in the file that is
actually opened must be compatible with those
used when the program was compiled. Obviously,
the easiest way to assure record compatibility is to
have the same overrides active at run time that
were active at compile time. If your program uses
externally described data and a different field level
file is used at run time, it is usually necessary to
specify LVLCHK(*NO) on the override. See “File
Redirection” on page 3-17 for details.

The following example shows how overrides work
when compiling a program:

Override 1 OVRDBF FILE(RPGSRC) +
TOFILE (SRCPGMS) MBR(INVN42)
OVRPRTF FILE(OUTPUT) TOFILE(REPORTS)

CALL PGM(A)

Override 2

Program A

OVRPRTF FILE(LISTOUT) +
TOFILE(OUTPUT)

OVRDBF FILE(RPGSRC) WAITFILE(30)

CRTRPGPGM PGM(INVENTORY) +
SRCFILE(RPGSRC)

RETURN

Override 3

Override 4

Override 5 OVRPRTF FILE(LISTOUT) +
TOFILE (REPORTS) LPI(8)

CALL PGM(INVENTORY)

The program INVENTORY opens the printer file
REPORTS in place of printer file LISTOUT and
creates output at 8 lines per inch.

The program INVENTORY is created (compiled)
from the member INVN42 in the database file
SRCPGMS. Override 4 (applied first) overrides an
optional file attribute. Override 1 (applied last)
causes the file RPGSRC to be overridden with the
database file SRCPGMS, member INVN42.

The program INVENTORY is created with the
printer formats from the file REPORTS. Assume
that the source for the program INVENTORY,
taken from file SRCPGMS and member INVN42,
contains an open to the printer file LISTOUT.
Override 3 (applied first) causes the file LISTOUT
to be overridden with OUTPUT. Override 2
(applied last) overrides OUTPUT with REPORTS.
Other attributes may be specified here, but it is
not necessary because only the record formats
are used at compile time.

At run time, override 3 is no longer active,
because program A has ended. Therefore over-
ride 2 has no effect on LISTOUT. However, over-
ride 5, which is active at run time, replaces
LISTOUT with REPORTS and specifies 8 lines per
inch. Because the same file is used for both com-
pilation and run-time, level checking may be left
on.

3-11

Chapter 3. Overrides and File Redirection

Effect of Overrides on Some
System Commands

The following commonly used commands ignore
overrides entirely:

ADDLFM DSPDBR
ADDPFM DSPFD
ALCOBJ DSPFFD
APYJRNCHG DSPJRN
CHGOBJOWN EDTOBJAUT
CHGPTR EDTDLOAUT
CHGSBSD ENDJRNPF
CHGXXXF (all change file commands) GRTOBJAUT
CLRPFM INZPFM
CLRSAVF MOVOBJ
CPYIGCTBL RGZPFM
CRTDKTF RMVJRNCHG
CRTDUPOBJ RMVM
CRTAUTHLR RNMOBJ
CRTSBSD RVKOBJAUT
CRTTAPF SBMDBJOB
DLCOBJ SIGNOFF
DLTF STRDBRDR
DLTAUTHLR STRJRNPF

Note: Save and restore operations ignore all file
overrides related to the save and restore media
(tape, diskette, save file).

Overrides are not applied to any system files that
are opened as part of an end-of-routing step or
end-of-job processing. For example, overrides
cannot be specified for the job log file. In some
cases, when you need to override something in a
system file, you may be able to change it through
a command other than an override command. For
example, to change the output queue for a job log,
the output queue could be changed before sign-off
using the OUTQ parameter on the Change Job
(CHGJOB) command to specify the name of the
output queue for the job. If the printer file for the
job log contains the value *JOB for the output
queue, the output queue is the one specified for
the job.

The following commands allow overrides for the
SRCFILE and SRCMBR parameters only:

CRTCMD CRTPRTF
CRTICFF CRTSRCPF
CRTDSPF CRTTBL
CRTLF CRTPF

3-12 AS/400 Data Management Guide

CRTXXXPGM

(All create program commands. These commands also use
ovetrrides to determine which file will be opened by a compiled
program. See “Applying Overrides When Compiling a
Program” on page 3-11 for more information.)

The following command allows overrides for the
TOFILE, MBR, SEQONLY, LVLCHK, and
INHWRT parameters:

OPNQRYF

The following commands allow overrides, but do
not allow changing the MBR to *ALL:

CPYFRMPCD CPYTOPCD

The following commands do not allow overrides to
be applied to the display files they use. Overrides
to the printer files they use should not change the
file type or the file name. Various restrictions are
placed on changes that may be made to printer
files used by these commands, but the system
can not guarantee that all combinations of pos-
sible specifications will produce an acceptable
report.

DMPOBJ and DMPSYSOBJ
(In addition to the preceding limitations,
these commands do not allow overrides to
the file they dump.)
DSPXXXXXX
(All display commands. The display com-
mands that display information about a file
do not allow overrides to that file.)
DSPIGCDCT
EDTIGCDCT
GO
(Message file can be overridden.)
PRTXXXXXX
(All print commands.)
QRYDTA
TRCXXX
(All trace commands.)
WRKXXXXXX
(All work-with commands.)

Deleting Overrides

When a program that has been called returns
control to the calling program, any overrides speci-
fied in the call level of the called program are
deleted. This does not include overrides that are
scoped to the job level. Overrides that are scoped
to the job level remain in effect until they are

explicitly deleted, replaced, or until the job in
which they are specified ends.

When control is transferred to another program
(TFRCTL command), the overrides in the call level
of the transferring program are not deleted. If you
want to delete an override before the program has
completed running, you can use the Delete Over-
ride (DLTOVR) command. This command can
delete overrides in the call level in which the
command is entered (the default) or delete over-
rides that are scoped to the job level. To delete
overrides that are scoped to the job level, you
must specify OVRSCOPE(*JOB) on the DLTOVR
command.

To identify an override, use the file name specified
on the FILE parameter of the override command.
You can delete all overrides at the current call
level or at the job level by specifying value *ALL
for the FILE parameter. In the following example,
assume that all the commands are entered at the
same call level:

Override 1 OVRDBF FILE(DBA) +
TOFILE(DBB)

Override 2 OVRPRTF FILE(PRTC) +
COPIES(2)

Override 3 OVRDKTF FILE(DKT) +
EXCHTYPE (*BASIC)

Delete Override 1
Delete Override 2

DLTOVR FILE(DBA)
DLTOVR FILE(*ALL)

Delete override 1 causes override 1 to be deleted.
Delete override 2 causes the remaining overrides
(overrides 2 and 3) to be deleted.

In the following example, assume that commands
1, 2, and 13 are entered interactively, at call
level 1:

Command 1 OVRDBF FILE(DBA) TOFILE(DBB) +
SECURE(*YES)
Command 2 CALL PGM(A)
Program A
Command 3 OVRPRTF FILE(DBB) TOFILE(PRTC) +
LPI(6)
Command 4 OVRDBF FILE(DBC) TOFILE(DBD) +
OVRSCOPE (*JOB)
Command 5 TFRCTL PGM(B)
Program B
Command 6 OVRDKTF FILE(DKTE) TOFILE(DKTF)
Command 7 CALL PGM(QCMDEXC) +
PARM('OVRDSPF FILE(DSPG) +
TOFILE(DSPH)' 31)
Command 8 DLTOVR FILE(DBA DBB)
Command 9 MONMSG MSGID(CPF9841)

CALL PGM(QCMDEXC) +
PARM('DLTOVR FILE(*ALL)"' 17)

Command 10

DLTOVR FILE(DBC) OVRSCOPE(*JOB)
RETURN
DLTOVR FILE(*ALL)

Command 11
Command 12
Command 13

Command 1 causes an override at level 1 from file
DBA to file DBB.

Command 2 calls program A and creates a new
call level (call level 2).

Command 3 causes an override at level 2 from file
DBB to file PRTC. Also, the LPI attribute of file
PRTC is overridden to 6.

Command 4 causes an override at the job level
from file DBC to file DBD.

Command 5 transfers control from program A to
program B at the same call level (call level 2).

Command 6 causes an override at level 2 from file
DKTE to file DKTF.

Command 7 causes an override at level 2 from file
DSPG to file DSPH. A call to QCMDEXC does
not cause a new call level.

Command 8 deletes any overrides of files DBA
and DBB at level 2. The override specified by
command 3 is deleted, but the override specified
by command 1 is not deleted. Because an over-
ride for DBA cannot be found at level 2, the

3-13

Chapter 3. Overrides and File Redirection

override-not-found escape message (CPF9841) is
sent.

Command 9 monitors for a message to prevent a
function check, but it specifies no action to be
taken if the message is sent.

Command 10 deletes all remaining overrides at
level 2. Overrides specified by commands 6 and
7 are deleted, but the overrides specified by com-
mands 1 and 4 are not deleted.

Command 11 deletes overrides to file DBC that
are scoped to the job level. The override speci-
fied by command 4 is deleted.

Command 12 causes a return to level 1, and level
2 is deleted. If any overrides were specified at
level 2 (scoped to the call level) between
command 10 and command 12, they are deleted
at this point.

Command 13 causes all overrides specified at call
level 1 to be deleted. The override specified by
command 1 is deleted.

Note: Command 13 would not delete any over-
rides that were scoped to the job level (although
there are none in this example at the time
command 13 is issued). In general, to delete all
overrides at the job level, you would have to
specify DLTOVR FILE(*ALL) OVRSCOPE(*JOB).

Displaying Overrides

You can use the Display Override (DSPOVR)
command to display file overrides at the job level
and at multiple call levels for a job. You can
display all file overrides, or file overrides for a spe-
cific file.

The file overrides may be merged before being
displayed. A merged override is the result of com-
bining overrides from the job level to the current
level or any specified call level, producing a com-
posite override which will be applied when the file
is used at the specific call level. The current call
level is the call level of the program that is cur-
rently running. This program is the last program
name displayed on the call stack. This command
may be requested from either a batch or interac-
tive environment. You can also access this func-
tion from option 15 (Display file overrides) from
the Work with Job menu (using the WRKJOB

3-14 AS/400 Data Management Guide

command) or by selecting option 15 (Display file
overrides) from the Display Job menu (using the
DSPJOB command).

1. To display the merged file override for a par-
ticular file at a specific call level, you type:

DSPOVR FILE(REPORTS) MRGOVR(*YES) LVL(3)

This command produces a display showing
the merged override for the file REPORTS at
call level 3 with text descriptions of each
keyword and parameter. Any applicable over-
rides at the job level and at call levels 1, 2,
and 3 are used to form the merged override,
but overrides at higher call levels are ignored.
If the call level specified is not active, all appli-
cable overrides up to the current level are
used.

2. To display all file overrides for a specific file
up to a specific call level, you type:

DSPOVR FILE(REPORTS) MRGOVR(*NO) LVL(2)

This command produces a display showing
the file name, the call level for which the over-
ride was requested, the type of override, and
the override parameters in keyword-parameter
form. If no file overrides are found for the file
up to and including the specified call level,
escape message CPF9842 is sent. If you are
using DSPOVR in a CL program, you might
want to add a MONMSG command following
the DSPOVR command to prevent your
program from ending if there are no overrides
for the file. This technique is illustrated in
some of the examples later in this chapter.
For more information on the MONMSG
command, refer to the CL Programmer’s
Guide.

3. To display the merged file overrides for all
files at the current call level, you type:

DSPOVR FILE(*ALL) MRGOVR(*YES) LVL(*)

This command produces a display showing
the file name, the type of override, and the
merged overrides in keyword-parameter form,
where only the keywords and parameters
entered on the commands are displayed. This
is the same as what happens when you type
DSPOVR with no parameters. Only those
keywords for which parameters were specified
are displayed. The associated text
descriptions are not displayed. Overrides at
call levels greater than 999 are not displayed.

4. When overrides are displayed not by the
DSPOVR command, but through an option on
one of the system interfaces to work with jobs
(for example, WRKJOB), all file overrides from
the job level to the current call level are dis-
played. This would be the same as typing the
following command:

DSPOVR FILE(*ALL) MRGOVR(*NO) LVL (%)

This produces a display showing the file
name, the level (call level or job level) for
which the override was requested, the type of
override, and the override parameters in
keyword-parameter form for each override.

Because the display overrides function uses a
copy of the internal control blocks, overrides
that were deleted between the time the
display overrides function was called and the
time the output was produced may not be
reflected in the output. This can occur only
when the overrides in another job are being
displayed.

Note that when specifying a call level, as in the
first two examples in this section, the call level on
which you first entered override commands may
not be level 1. Depending on the contents of the
first program and first menu specified in your user
profile, and any other programs or menus you
may have come through, you may have entered
your first override commands at level 3 or 4. You
may enter WRKJOB and select option 11 (call
stack) to see what programs are running at lower
call levels.

Unless you know exactly what you want to see, it
is usually best to request the override display with
no parameters, because options on the basic
override display allow you to select a detailed
display of any override you are interested in. The
specific options available are:

* From the merged display of all overrides, you
can request the display that is not merged, as
in step 4.

e From the display (not merged) of all overrides,
you can request the merged display.

¢ From the merged display of all overrides, you
can request a merged detail display of any
override, equivalent to step 1 on page 3-14.

e From the merged display of all overrides, you
can request a display of all the individual over-

rides that contributed to the merged display,
showing the level (call level or job level) for
which each was requested.

» From either the display of contributing over-
rides or the display (not merged) of all over-
rides, you can request a detail display of the
override for a particular file at a single call
level.

The following example is intended only to illustrate
what the various forms of the display override
command can do. The DSPOVR command is typ-
ically entered interactively or added temporarily to
a CL program, or to any high-level language
program via QCMDEXC, to verify that the proper
overrides are in effect at the time a program is
called or a file is opened. Assume that com-
mands 1, 2, 3, and 18 are entered at call level 1:

Command 1 OVRPRTF FILE(PRTA) COPIES(3)
Command 2 OVRDBF FILE(DBC) WAITFILE(*IMMED)
Command 3 CALL PGM(A)
Program A
Command 4 OVRPRTF FILE(PRTB) +
TOFILE(PRTA) COPIES(6)
Command 5 OVRDBF FILE(DBC) WAITFILE(60)
Command 6 OVRDBF FILE(DBE) TOFILE(DBF) +
OVRSCOPE (*JOB)
Command 7 DSPOVR FILE(PRTB) MRGOVR(*YES)
Command 8 CALL PGM(B)
Program B
Command 9 CALL PGM(QCMDEXC) +

PARM('OVRDSPF FILE(DSPE) +

TOFILE(DSPF)' 31)
Command 10
Command 11
LVL(3)
Command 12
LVL(2)
MONMSG MSGID(CPF9842)
CALL PGM(QCMDEXC) +
PARM('DSPOVR FILE(*ALL) +
MRGOVR (*YES) LVL(*) +
QUTPUT (%) ' 47)
RETURN

Command 13
Command 14

Command 15

DSPOVR FILE(*ALL) MRGOVR(*NO)
RETURN

Command 16

Command 17

Command 18 DSPOVR FILE(*ALL) MRGOVR(*NO) +
LVL(2) OUTPUT(*)

3-15

Chapter 3. Overrides and File Redirection

OVRDBF FILE(DBC) TOFILE(DBD)
DSPOVR FILE(DBC) MRGOVR(*NO) +

DSPOVR FILE(DBD) MRGOVR(*NO) +

Command 1 causes an override at level 1 of the
COPIES attribute of file PRTA to 3 copies.

Command 2 causes an override at level 1 of the
WAITFILE attribute of file DBC to *IMMED.

Command 3 calls program A and creates a new
call level, 2.

Command 4 causes an override at level 2 from file
PRTB to file PRTA. Also, the COPIES attribute is
overridden to 6.

Command 5 causes an override at level 2 of the
WAITFILE attribute of file DBC to 60.

Command 6 causes an override of file DBE to file
DBF and scopes the override to the job level.

Command 7 displays a merged override for file
PRTB at level 2 with text descriptions of each
keyword and parameter, as shown in Figure 3-5.
The to-file is PRTA because of command 4, and
the COPIES attribute is 3 because of command 1.

Display Override with Printer File

File: PRB
Call Tevel *
Merged

Value
Name of file being overridden . . : FILE PRTB
Overriding to printer file . : TOFILE PRTA
Library . . . o oL *LIBL
Number of copies COPIES 3

Press Enter to continue.

F3=Exit F12=Cancel

Figure 3-5. Override with Printer File Display

Command 8 calls program B and creates the new
call level 3.

Command 9 causes an override at level 3 from file
DSPE to file DSPF. An override done via a call to
the QCMDEXC program takes the call level of the
program that called the QCMDEXC program.

3-16 AS/400 Data Management Guide

Command 10 causes an override of file DBC to
file DBD.

Command 11 displays all overrides for file DBC
from level 1 to level 3, as shown in Figure 3-6.
The overrides specified by commands 9, 5, and 2
are displayed in keyword-parameter form.
Observe that this form of the DSPOVR command
shows all the overrides for the selected file,
regardless of redirection. The three overrides that
are shown would not be merged because of the
name change at level 3.

Display A1l File Overrides
Call Tevel

Type options, press Enter.
5=Display override details

Opt File Level Type Keyword Specifications
_ DBC 3 DB TOFILE(*LIBL/DBD)

2 DB

1 DB

WAITFILE(60)
WAITFILE (*IMMED)

F3=Exit F5=Refresh F12=Cancel

Figure 3-6. All File Overrides Display (One File)

Command 12 attempts to display all file overrides
for file DBD from level 1 to level 2. Because no
overrides for file DBD exist at levels 1 or 2, no
overrides are displayed, and the override-not-
found escape message (CPF9842) is sent.

Command 13 monitors for message CPF9842 on
the preceding command. The monitor specifies
no action to be taken, but will prevent a function
check if the message is sent.

Command 14 displays the merged overrides at the
job level to call level 3 for all files in keyword-
parameter form, as shown in Figure 3-7 on

page 3-17. File DBC is overridden to file DBD
because of command 10 (commands 5 and 2 are
therefore not effective). File DSPE is overridden
to file DSPF because of command 9. File PRTB
is overridden to file PRTA and COPIES(3)
because of commands 4 and 1. Fileé DBE is over-
ridden to file DBF because of command 6.

Display A1l Merged File Overrides
Call Tevel *
Type options, press Enter.

5=Display override details 8=Display contributing file overrides

Opt File Type Keyword Specifications

_ DSPE DSP TOFILE(*LIBL/DSPF)

8 PRTB PRT TOFILE(*LIBL/PRTA) COPIES(3)

_ DBC DB TOFILE(*LIBL/DBD)

_ PRTA PRT COPIES(3)

_ DBE DB TOFILE(*LIBL/DBF)

F3=Exit F5=Refresh F11=A11 file overrides Fl2=Cancel

Figure 3-7. All Merged File Overrides Display

If you enter a 5 on the line for PRTB, you get a
detail display like the one shown in Figure 3-5 on
page 3-16. If you enter an 8 on this same line,
you get a display showing commands 4 and 1 on
separate lines, as shown in Figure 3-8. These
are the overrides that were merged to form the
PRTB override.

Display Contributing File Overrides

File: PRIB
Call level: *
Type options, press Enter.

5=Display override details

Opt Level Type Keyword Specifications
PRT TOFILE(*LIBL/PRTA) COPIES(6)
COPIES(3)

1 PRT

F3=Exit F5=Refresh F12=Cancel F14=Display previous override

Figure 3-8. Contributing File Overrides Display

Command 15 causes a return to level 2, and level
3 is deleted. The overrides issued at level 3 are
implicitly deleted.

Command 16 displays all overrides issued for the
job level to the current call level (level 2), as
shown in Figure 3-9. The overrides specified in
commands 1, 2, 4, 5, and 6 are displayed in
keyword-parameter form. The override issued in
command 10 is not displayed because call level 3
is no longer active. Pressing F11 on this display
allows you to see a display similar to the one
shown in Figure 3-7.

|

Display A1l File Overrides
Call Tevelt %

Type options, press Enter.
5=Display override details

Keyword Specifications

Opt File Level Type
PRT TOFILE(*LIBL/PRTA) COPIES(6)

PRTB 2

~ DBC 2 DB WAITFILE(60)

_ 1 DB WAITFILE (*IMMED)

_ PRTA 1 PRT COPIES(3)

_ DBE *«JOB DB TOFILE (+LIBL/DBF)

F3=Exit F5=Refresh F11=A11 merged file overrides Fl2=Cancel

Figure 3-9. All File Overrides Display (All Files)

Command 17 causes a return to level 1, and level
2 is deleted. The overrides issued at level 2 that
are scoped to the call level are implicitly deleted.
However, the override caused by command 6 is
not deleted.

Command 18 displays all overrides for the job
level to call level 2 in keyword-parameter form.
Because level 2 is no longer active, only the over-
rides scoped to the job level (command 6) and
those specified at level 1 in commands 1 and 2
are displayed.

File Redirection

File redirection refers to using overrides to change
the file name and library or the type of the file to
be processed. For example, you can substitute
one database file for another or change from
using an ICF file to using a display file. This
section applies to using an application program
only. System code may or may not support file
redirection. Refer to “Effect of Overrides on Some
System Commands” on page 3-12 for rules on
how system code processes overrides.

You use the OVRDBF command to redirect a file
to a Distributed Data Management (DDM) file. If
the remote system is another AS/400 system, alll
normal rules discussed in this chapter apply. If
the remote system is not an AS/400 system or
System/38, then normally you should not specify
an expiration date or end-of-file delay. For more
information, refer to the Distributed Data Manage-
ment Guide.

3-17

Chapter 3. Overrides and File Redirection

When you replace the file that is used in a
program with another file of the same type, the
new file is processed in the same manner as the
original file. If a field level file, or any other file
containing externally described data is redirected,
it usually is necessary to either specify
LVLCHK(*NO) or recompile the program. With
level checking turned off, it is still necessary that
the record formats in the file be compatible with
the records in the program. If the formats are not
compatible, the results cannot be predicted.

Overrides that have a TOFILE parameter value
other than *FILE remove any database member
specifications that may be on overrides applied at
higher call levels. The member name will default
to *FIRST unless it is specified with the change to
the file name or library or on another override at a
lower call level.

If you change to a different type of file, the device-
dependent characteristics are ignored and records
are read or written sequentially. Some device
parameters must be specified in the new device
file or the override. Defaults are taken for others.
The effect of specific redirection combinations is
described later in this section.

Any attributes specified on overrides of a different
file type than the final file type are ignored. The
parameters SPOOL, SHARE, and SECURE are
exceptions to this rule. They will be accepted
from any override applied to the file, regardless of
device type.

Some redirection combinations present special
problems due to the specific characteristics of the
device. In particular:

¢ File redirection is not recommended for save
files.

» Nonsequentially processed database files can
be redirected only to another database file or
a DDM file.

» Display files and ICF files that use multiple
devices (MAXDEV or MAXPGMDEV > 1) can
be redirected only to a display file or ICF file.

3-18 AS/400 Data Management Guide

* Redirecting a display file to any other file type,
or another file type to a display file, requires
that the program be recompiled with the over-
ride active if there are any input-only or
output-only fields. This is necessary because
the display file omits these fields from the
record buffer in which they are not used, but
other file types do not.

Table 3-1 summarizes valid file redirections.

To use this chart, identify the file type to be over-
ridden in the FROM-FILE columns and the file
type overriding in the TO-FILE column. The inter-
section specifies an | or O or both, meaning that
the substitution is valid for these two file types
when used as input files or as output files.

For instance, you can override a diskette output
file with a tape output file, and a diskette input file
with a tape input file. The chart refers to file type
substitutions only. That is, you cannot change the
program function by overriding an input file with an
output file. The charts on the following pages
describe the specific defaults taken and what is
ignored for each redirection combination.

Table 3-1. File Redirections

From-File
Dis- Data-
To-File Printer ICF kette Display base Tape
Printer o~ (0] (0] (0] 0] O
ICF I/0 /0
o] o} (0] (0] (0] O
I | | | |
Diskette (0] (0] (0] 0] (0] O
| | 1 | |
Display /0 110
O (0] o} 0} (0]
| | | I |
Database O (0] (0] (0] (0] (0]
| I | | |
0
|

Tape O (0] O (0]
| | |

ll®)

I=input file O=output file 1/O=input/output file
*=redirection to a different type of printer

From Printer

To

ICF: Records are written to the file
one at a time. Printer control informa-
tion is ignored.

Display: Records are written to the
display with each record overlaying the
previous record. For program-
described files, you can request each
record using the Enter key. Printer
control information is ignored.

Database: Records are written to the
database in sequential order. Printer
control information is ignored.

Diskette: The amount of data written
on diskette is dependent on the
exchange type of the diskette.
Diskette label information must be pro-
vided in the diskette file or on an over-
ride command. Printer control
information is ignored. Refer to the
Guide to Programming for Tape and
Diskette for a description of exchange

types.

Tape: Records are written to the tape
in sequential order. Tape label infor-
mation must be specified in the tape
file or on an override command.
Printer control information is ignored.

From
To

ICF input

Display: Records are retrieved from
the display one at a time. Type in the
data for each record and press the
Enter key when the record is com-
plete.

Database: Records are retrieved from
the database.

Diskette: Records are retrieved in
sequential order. Diskette label infor-
mation must be provided in the
diskette file or on an override
command. Refer to the Guide to Pro-
gramming for Tape and Diskette for a
description of exchange types.

Tape: Records are retrieved in
sequential order. Tape label informa-
tion must be specified in the tape file
or on the override command.

From
To

ICF output

Printer: Records are printed and
folding or truncating is performed as
specified in the printer file.

Display: Records are written to the
display with each record overlaying the
previous record.

Database: Records are written to the
database in sequential order.

Diskette: The amount of data written
on diskette is dependent on the
exchange type of the diskette.

Diskette label information must be pro-
vided in the diskette file or on an over-
ride command. Refer to the Guide to
Programming for Tape and Diskette for
a description of exchange types.

Tape: Records are written to the tape
in sequential order. Tape label infor-
mation must be specified in the tape
file or on the override command.

Chapter 3. Overrides and File Redirection 3=19

From
To

ICF input/output

Display: Input records are retrieved
from the display one at a time. Type
in the data for each record and press
the Enter key when the record is com-
plete. Output records are written to
the display with each record overlaying
the previous input or output record.
Input and output records are essen-
tially independent of each other and
may be combined in any manner.

From
To

Diskette input

ICF: Records are retrieved from the
ICF file one at a time.

Display: Records are retrieved from
the display one at a time. Type in the
data for each record and press the
Enter key when the record is com-
plete. A nonfield-level device file must
be specified. Diskette label informa-
tion is ignored.

Database: Records are retrieved in
sequential order. Diskette label infor-
mation is ignored.

Tape: Records are retrieved in
sequential order. If a label value is
specified in the program, that value is
used as the label for the tape file.

From
To

Diskette output

ICF: Records are written to the ICF
file one at a time.

Database: Records are written to the
database in sequential order.

Display: Records are written to the
display with each record overlaying the
previous record. You can request
each output record using the Enter
key.

Printer: Records are printed and
folding or truncating is performed as
specified in the printer file.

Tape: Records are written on tape in
sequential order.

3-20 AS/400 Data Management Guide

From
To

Display input

ICF: Records are retrieved from the
ICF file one at a time.

Diskette: Records are retrieved in
sequential order, Diskette labe! infor-
mation must be provided in the
diskette file or on an override
command. Refer to the Guide to Pro-
gramming for Tape and Diskette for a
description of exchange types.

Database: Input records are retrieved.

Tape: Records are retrieved in
sequential order. Tape label informa-
tion must be specified in the tape file
or on an override command.

From
To

Display output

ICF: Records are written to the ICF
file one at a time.

Database: Records are written to the
database in sequential order.

Diskette: The amount of data written
on diskette is dependent on the
exchange type of the diskette.

Diskette label information must be pro-
vided in the diskette file or on an over-
ride command. Refer to the Guide to
Programming for Tape and Diskette for
a description of exchange types.

Tape: Records are written on tape in
sequential order. Tape label informa-
tion must be specified in the tape file
or on an override command.

Printer: Records are printed and
folding or truncating is performed as
specified in the printer file.

From Database input (sequentially pro-

To

cessed)

ICF: Records are retrieved from the
ICF file one at a time.

Display: Records are retrieved from
the display one at a time. Type in the
data for each record and press the
Enter key when the record is com-
plete. A nonfield-level device file must
be specified.

Diskette: Records are retrieved in
sequential order. Diskette label infor-
mation must be provided in the
diskette file or on an override
command. Refer to the Guide to Pro-
gramming for Tape and Diskette for a
description of exchange types.

Tape: Records are retrieved from tape
in sequential order. Tape label infor-
mation must be specified in the tape
file or on an override command.

From

To

Display input/output

ICF: Input records are retrieved from
the ICF file one at a time. Output
records are written to the ICF file one
at a time. The relationship between
the input and output records is deter-
mined by the application program.

Chapter 3. Overrides and File Redirection ~ 3-21

From Database output (sequentially pro-

To

cessed)

Printer: The number of characters
printed is determined by the page size
specified. If folding is specified, all of
a record is printed.

ICF: Records are written to the ICF
file one at a time.

Display: Records are written to the
display with each record overlaying the
previous record. You can request
each output record using the Enter
key.

Diskette: The amount of data written
on diskette depends on the exchange
type of the diskette. Diskette label
information must be provided in the
diskette file or on an override
command. Refer to the Guide to Pro-
gramming for Tape and Diskette for a
description of exchange types.

Tape: Records are written on tape in
sequential order. Tape label informa-
tion must be specified in the tape file
or on an override command.

From Tape output

To Printer: Records are printed, and
folding or truncating is performed as
specified in the printer file.

ICF: Records are written to the ICF
file one at a time. Tape label informa-
tion is ignored.

Diskette: The amount of data written
on diskette depends on the exchange
type of the diskette. If a label value is
specified in the program, that value is
used as the label for the diskette file.
Refer to the Guide to Programming for
Tape and Diskette for a description of
exchange types.

Display: Records are written to the
display with each record overlaying the
previous record. You can request
each output record using the Enter
key.

Database: Records are written to the
database in sequential order.

From
To

Tape input

ICF: Records are retrieved from the
ICF file one at a time.

Display: Records are retrieved from
the display one at a time. Type in the
data for each record and press the
Enter key when the record is com-
plete. A nonfield-level device file must
be specified. Tape label information is
ignored.

Database: Records are retrieved in
sequential order. One record is read
as a single field. Tape label informa-
tion is ignored.

Diskette: Records are retrieved in
sequential order. If a label value is
specified in the program, that value is
used as the label for the diskette file.

3-22 AS/400 Data Management Guide

Overriding Program Device
Entries

In addition to the file attributes and record formats
similar to those in other device files, an ICF file
also contains program device entries which
provide the link between the application and each
of the remote systems or devices with which your
program communicates.

The following lists the CL commands that provide
override functions for device entries:

DLTOVRDEVE
Delete Override Device Entry: Deletes
one or more program device overrides
that were previously specified in a call
level.

OVRICFDEVE
Override with Intersystem Communica-
tions Program Function Device Entry:
Used to temporarily add the program
device entry and the remote location
name to the ICF file or to override a
program device entry with the specified

remote location name and attributes for an
ICF file.

A program device entry has two functions:

* |t associates a program device name with a
remote location.

* |t establishes a set of program
communications-type dependent attributes.

Multiple program device entries can be defined.
Each program device entry must have a unique
program device name. The maximum number of
entries is determined by the MAXPGMDEV
parameter specified at file creation.

Program device entries may be defined by the
Add Intersystem Communications Function
Program Device Entry (ADDICFDEVE) command
or the OVRICFDEVE command. The add
command makes a permanent addition to the file,
and the override command makes a temporary
change to the program device information. It is
not necessary to add a program device entry
before overriding it. Several add commands may
be used to add multiple program devices to the
same file. Several override commands may be
used to change different device entries. Refer to
the ICF Programmer’s Guide for more information
on program device entries and for a list of the
parameters supported by each communications

type.

Overriding Remote Location
Name

The device entry override may be used to tempo-
rarily define or change the remote location name
associated with the program device entry.

The following example demonstrates the use of
the OVRICFDEVE command to override the
remote location name:

OVRICFDEVE PGMDEV(PGMDEVA) RMTLOCNAME (CHICAGO)
CALL RPGPGM

In this example, when RPGPGM specifies
PGMDEVA, remote location CHICAGO is used.
Refer to the ICF Programmer’s Guide for more

information on remote location name and its
relationship to configuration.

Overriding Session Attributes

The device entry override may also be used to
temporarily change the characteristics of the com-
munications session that is established when the
program device is acquired.

Although some of the session attributes have
system-level defaults, the default for the majority
of these attributes is information supplied during
communications configurations.

Session attributes are identified as parameters on
the ADDICFDEVE or OVRICFDEVE command.
Parameters not specified on either command take
on the appropriate system default or specified
configuration value. If the same parameter is
specified on both the ADDICFDEVE and
OVRICFDEVE commands, the value specified on
OVRICFDEVE overrides the value declared on the
ADDICFDEVE command.

The following example demonstrates the use of
the OVRICFDEVE command to override the
format selection processing attribute:

OVRICFDEVE PGMDEV(PGMDEVA) FMTSLT (*PGM)

In this example, format selection is changed to
*PGM. This overrides what was previously
defined in the program device entry. Refer to the
appropriate communications programming manual
for more information on the use of the session
attributes. Refer to the CL Reference manual for
more information on the format and allowable
values of the parameters on the OVRICFDEVE
command.

Overriding Remote Location
Name and Session Attributes

This form of the override device entry is a combi-
nation of the previous two forms. With this form of
override, you can override the remote location that
is used by a program, and you can also override
the session attributes.

Chapter 3. Overrides and File Redirection 3-23

Applying OVRICFDEVE
Command

Device entry overrides follow most of the same
rules as file overrides. They are effective from the
time they are specified until they are replaced or
deleted or until the program in which they were
specified ends. Any program device entry over-
rides that are in effect at the time the device is
acquired are applied.

The OVRICFDEVE command can be used to ini-
tialize an environment or change the environment
while running.

In the following example, the OVRICFDEVE com-
mands are initializing an environment:

Override 1 OVRICFDEVE PGMDEV(PGMDEV1) +
RMTLOCNAME (BOSTON) . . .

Override 2 OVRICFDEVE PGMDEV(PGMDEV2) +
RMTLOCNAME (ROCHMN) . . .

CALL PGM(A)
CALL PGM(B)

CALL PGM(X)

When the program uses any ICF file and acquires
the program device named PGMDEV1, then the
remote location named BOSTON and attributes
from override 1 are used when establishing the
communication session.

When the program uses an ICF file and acquires
the program device named PGMDEV2, then the
remote location named ROCHMN and attributes
from override 2 are used when establishing the
communication session.

In the following example, the OVRICFDEVE com-
mands are used to change the running environ-
ment:

Override 1 OVRICFDEVE PGMDEVE (PGMDEV1) +
RMTLOCNAME (BOSTON) . . .
CALL PGM(A)
Override 2 OVRICFDEVE PGMDEVE (PGMDEV2) +

RMTLOCNAME (ROCHMN) . . .
CALL PGM(A)

3-24 AS/400 Data Management Guide

The first time program A is called, an ICF file is
opened and the program device named
PGMDEV1 acquired. The remote location named
BOSTON and attributes from override 1 are used
when establishing the communication session.

The second time program A is called, an ICF file
is opened and the program device named
PGMDEV2 is acquired. The remote location
named ROCHMN and attributes from override 2
are used when establishing the communication
session.

Applying OVRICFDEVE from Multiple

Call Levels: When you have more than one
override for the same program device at several
call levels (nested calls), the order in which the
overrides are applied to the program device is
from the highest call level to the lowest call level.
Any job level overrides are applied last.

To prevent overrides at lower call levels from
being applied, see“Applying OVRICFDEVE with
SECURE” on page 3-25 .

In the following example, override 2 is in the
highest call level and override 1 is in the lowest
call level.

Override 1 OVRICFDEVE PGMDEV(PGMDEV1) +
FMTSLT (*PGM) BATCH(*NO)
CALL PGM(A)
Program A
Override 2 OVRICFDEVE PGMDEV(PGMDEV1) +

FMTSLT (*RECID) APPID(PAYROLL)
CALL PGM(X)

When program X acquires program device
PGMDEV1, the following attributes are used:

FMTSLT(*PGM)
BATCH(*NO)
APPID(PAYROLL)

From Override 1
From Override 1
From Override 2

The attribute of FMTSLT(RECID) specified in
override 2 is not used because it was overridden
by FMTSLT(*PGM) specified in override 1. Over-
ride 1 overrides override 2. If there is a third over-
ride for program device PGMDEV1 embedded in
program X, it is overridden by override 2 and then
override 1.

A similar situation exists when you change the
remote location to be used with the program
device and you also change some of the attributes
of the program device. For example:

Override 1 OVRICFDEVE PGMDEV(PGMDEV1) +
RMTLOCNAME (NYCAPPC)
CALL PGM(A)
Program A
Override 2 OVRICFDEVE PGMDEV(PGMDEV1) +

RMTLOCNAME (MPLSAPPC) +
CNVTYPE (*USER)
CALL PGM(X)

When program X is ready to acquire PGMDEV1, it
acquires remote location NYCAPPC instead of
MPLSAPPC (because override 1 overrides over-
ride 2 remote location). Also, the conversation
type is *USER (because of override 2).

Applying OVRICFDEVE with SECURE:
On occasion, you may want to protect program
devices used by a program from overrides at
lower call levels.

You can prevent additional program device over-
rides by coding the SECURE(*YES) parameter on
a program device override command for each
program device needing protection. This protects
you from overrides at lower call levels.

The following shows an example of a protected
program device:

Override 1 OVRICFDEVE PGMDEV (PGMDEV1) +
RMTLOCNAME (BOSTON)

OVRICFDEVE PGMDEV(PGMDEV4) +
RMTLOCNAME (ROCHMN)

CALL PGM(A)

Override 2

Program A

OVRICFDEVE PGMDEV(PGMDEV5) +
RMTLOCNAME (NYC)

CALL PGM(B)

Override 3

Program B

Override 4 OVRICFDEVE PGMDEV(PGMDEV1) +

RMTLOCNAME (MPLS) SECURE(*YES)

CALL PGM(X)

When program X acquires program device
PGMDEV1 for an ICF file, the remote location
MPLS and attributes from override 4 are used.
Because override 4 specifies SECURE(*YES),
override 1 is not applied.

Deleting Device Entry Overrides

When a program returns from a call level con-
taining program device entry overrides, the over-
rides are deleted, just as any file overrides are
deleted. When control is transferred to another
program (TFRCTL command) so that the program
is running at the same call level, the overrides are
not deleted. If you want to delete an override
before the run is completed, you can use the
Delete Override Device Entry (DLTOVRDEVE)
command. This command only deletes overrides
in the call level in which the command is entered.
A DLTOVRDEVE command does not delete the
effects of an ADDICFDEVE command. To
remove an ADDICFDEVE command, you must
use the Remove Intersystem Communications
Function Program Device Entry (RMVICFDEVE)
command. To identify an override, use the
program device name specified on the PGMDEV
parameter of the override. You can delete all
overrides at this call level by specifying value *ALL
for the PGMDEV parameter. For example:

Override 1 OVRICFDEVE PGMDEV(PGMDEV1) +
RMTLOCNAME (BOSTON)

Override 2 OVRICFDEVE PGMDEV(PGMDEV4) +
RMTLOCNAME (ROCHMN)

Override 3 OVRICFDEVE PGMDEV(PGMDEV5) +

RMTLOCNAME (NYC)
DLTOVRDEVE PGMDEV (PGMDEV1)
DLTOVRDEVE PGMDEV (*ALL)

Delete Override 1
Delete Override 2

Delete override 1 causes override 1 to be deleted.
Delete override 2 causes the remaining overrides
(overrides 2 and 3) to be deleted.

Displaying Device Entry
Overrides

Device entry overrides are not displayed by the
Display Override (DSPOVR) command. There is
no corresponding command to display device
entry overrides.

Chapter 3. Overrides and File Redirection ~3-25

3-26 AS/400 Data Management Guide

Chapter 4. Copying Files

You can use the copy function to move data
between device files, database files, or device and
database files. Unlike traditional copy utilities, the
AS/400 copy function is field-level sensitive.
Therefore, if you use the copy function, you can
rearrange, enlarge, or drop any of the fields. The
system also provides a way to define database
files. Specific copy commands simplify dealing
with tape and diskette units, database source files,
and open query files.

You can copy records to and from files using the
following commands:

CPYF
Copy File: Copies all or part of a file from the
database or external device to the database or
external device.

CPYFRMDKT
Copy from Diskette: Copies from a diskette file
to a database or device file. The from-file
must be a diskette file for this command, but
the to-file can be a physical, program-
described printer, tape, or diskette file. You
can obtain a formatted listing of the records
using the IBM-supplied printer file, QSYSPRT.

CPYTODKT
Copy to Diskette: Copies a database or device
file to a diskette file. The to-file must be a
diskette file. The from-file can be a physical,
logical, tape, diskette, or inline data file.

CPYFRMTAP
Copy from Tape: Copies from a tape file to a
database or device file. The from-file must be
a tape file, but the to-file can be a physical file,
diskette file, tape file, or program-described
printer file. You can obtain a formatted listing
of the records using QSYSPRT.

© Copyright IBM Corp. 1991, 1993

CPYTOTAP
Copy to Tape: Copies from a database or
device file to a tape file. The to-file must be a
tape file, but the from-file can be a physical,
logical, diskette, tape, or inline data file.

CPYSRCF
Copy Source File: Copies a database source
file to a source physical file and converts the
data in the from-file to the to-file CCSID. A for-
matted listing can be created using QSYSPRT
(the file is changed for source records and is
different from other copy command file
formats). Record data is copied from the from-
file to the to-file, disregarding differences in
record formats (similar to the
FMTOPT(*NOCHK) parameter option on the
CPYF command, except for the CCSIDs.)

CPYFRMQRYF
Copy from Query File: Copies an open query
file to a database or device file.

If you specify a DDM file and a local file on the
CPYF or CRYSRCF commands, the system does
not verify that the remote and local files are not
the same file on the source system. If one DDM
file is specified, a user can potentially copy to and
from the same file.

For information on how to copy DBCS-open fields
to graphic fields (including the option of removing
trailing single-byte blanks for the DBCS-open field
first), see “DBCS-Graphic Fields” on page 4-33.

Throughout this chapter, unless a specific
command is mentioned, the term copy com-
mands refers to all the commands just described.

The device and database files where copy oper-
ations may be performed are shown in Table 4-1
on page 4-2.

4-1

Table 4-1. Copy Operations

From-Files To-Files
DDM DDM
Diskette1 Diskettel
Logical Physical2
Open Query3 Printer
Physical *PRINT4
Inline Data5 Tape
Tape

1

If the from-file and the to-file are both diskette files,
the to-file must be spooled.

If the to-file does not exist before the copy opera-
tion, the copy operation will create a physical file as
the to-file if you specified:

e CRTFILE(*YES) on the CPYF command and
the from-file is a physical or logical file.

e CRTFILE(*YES) on the CPYFRMQRYF
command.

Open query files can only be copied by using the
CPYFRMQRYF command. CPYFRMQRYF is not
allowed for open query files that use DDM files.

If TOFILE(*PRINT) is specified, the from-file
records are copied to the IBM-supplied printer
device file QSYSPRT and formatted according to
the OUTFMT parameter.

An iniine data file (which is handled like a device
file) is included as part of a batch job when the job
is read by a reader program.

While copying records, some of the copy com-
mands can perform the following functions:

e Copy from or to the first file member, a partic-

ular file member, a generic set of members, or
all file members (FROMMBR and TOMBR
parameters).

e Add a member to a physical to-file if the

member does not exist.

4-2 AS/400 Data Management Guide

¢ Add records to an existing file member or

replace the contents of an existing member
(MBROPT parameter).

» Select certain records to copy by one of the

following methods:

— Selecting records by record format name
when a multiformat logical file is copied
(RCDFMT parameter).

— Specifying records starting at a relative
record number and/or ending at a relative
record number (FROMRCD and TORCD
parameters).

— Specifying records starting with a specific
record key value and/or ending with
another specific record key value
(FROMKEY and TOKEY parameters).

— Specifying the number of records to be
copied (NBRRCDS parameter).

— Selecting records by the contents of one
or more character positions in the record
or in a field in the record (INCCHAR
parameter).

— Selecting records by the values contained
in one or more fields in the record
(INCREL parameter).

— Disregard or include deleted records in the
from-file during the copy if processing the
from-file in arrival sequence (COMPRESS
parameter).

* Print copied records and/or excluded records

(PRINT parameter) in a specified format
(OUTFMT parameter).

¢ Copy records whose from-file and to-file to be done, the starting sequence number and

record formats are different (FMTOPT param- the increment value can be specified
eter). When formats are different, you can: (SRCSEQ parameter).
— Map fields whose names are the same in » End the copy after a specified number of
the from-file and to-file record formats and recoverable errors are encountered (ERRLVL
whose field attributes are compatible parameter).

("MAP value). » Create the to-file as part of the copy operation

— Drop fields in the from-file record format (CRTFILE parameter).
that do not exist in the to-file record format
(*DROP value). Refer to the following tables (Table 4-2 and

Table 4-3 on page 4-5) for a summary of what
specific copy functions (using the copy com-
mands) can be used for copying records by the

— Copy data directly (left to right) disre-
garding any differences (*NOCHK value).

» Copy from a source file to a data file or from a types of files being copied from and to. The func-
data file to a source file. If the from-file or tions with their associated parameters are listed
to-file is a device file, this function is auto- down the left side, and the file types (and if each
matic. If both files are database files, can be a from-file and/or a to-file) are shown
FMTOPT(*CVTSRC) is required. across the top. An X indicates that the associated

parameter is valid for the type and use of file

» Change sequence numbers and/or zero dates C
under which it occurs.

in the sequence number and date source
fields when copying to a source physical file

the CL | for th ifi
(SRCOPT parameter). When renumbering is See the freference manual for the specific

parameters supported by each copy command.

Chapter 4. Copying Files 4-3

Table 4-2. Summary of Copy Functions for Database Files

Database Files1
Physical Logical
Copy Function Parameter From To From To
Select files FROMFILE2 X X
TOFILE X
Select members FROMMBR X X
TOMBR X
Add to or replace existing records MBROPT X
Create the to-file CRTFILE3 X X
Print copied and/or excluded records PRINT4 X
Select by record format RCDFMT
Select by relative record number FROMRCD X X5
TORCD X X5
Select by key field value FROMKEY X X
TOKEY X X
Specify number of records to copy NBRRCDS X X
Select by character content INCCHAR X X
Select by field value INCREL X X
Process different database record formats FMTOPT X X X
Update sequence number and/or date SRCOPT X X X
Specify start value and increment SRCSEQ X X X
Print character and/or hex format OUTFMT4 X X X
Maximum recoverable errors allowed ERRLVL X X X
Disregard or include deleted records COMPRESSS6 X X

1
2

DDM files will appear to act like database files, with exceptions noted in the DDM Guide.

On the CPYFRMQRYF command, the FROMOPNID parameter is used to identify an open identifier for the open query file to be
copied from. The FROMFILE parameter is used in all other copy commands.

If the to-file does not exist before the copy operation and the from-file is a physical or logical file, the copy operation will create a
physical file as the to-file if you specified CRTFILE(*YES) on the copy commands.

You can specify a program-described printer file so that the copy will produce a list with no special formatting or page headings,
or you can specify TOFILE(*PRINT) to produce a formatted list. You can specify PRINT(*COPIED) to produce a formatted list
of the copied records, and you can specify PRINT(*EXCLD) to produce a formatted list of the records excluded by the
INCCHAR or INCREL parameters. When you request a list by specifying the TOFILE(*PRINT) parameter, the OUTFMT param-
eter specifies whether the data is printed in character or in both character and hexadecimal form.

You can specify the FROMRCD and TORCD parameter values for a logical file if it has an arrival sequence access path.
You cannot specify COMPRESS(*NO) if:

» The to-file member or a logical file member based on the to-file member has a keyed access path with any of the following
attributes:
— Unique keys (UNIQUE keyword specified in the DDS)
— Floating-point key field or logical numeric key field and not MAINT(*REBLD)
— Select/omit specifications in the DDS (without the DYNSLT keyword specified) and not MAINT(*REBLD)
 Field-level mapping or source/data conversion is required (FMTOPT parameter).
* An EOFDLY wait time is specified for the from-file on an Override Database File (OVRDBF) command.

Note: To copy deleted records, the from-file must be processed in arrival sequence.

4-4 AS/400 Data Management Guide

Table 4-3. Summary of Copy Functions for Device Files

Device Files
Inline
Data Diskette Tape Printer

Copy Function Parameter From| To From| To From| To From| To
Select files FROMFILE X X1 X

TOFILE X1 X X
Select members FROMMBR X X

TOMBR X X
Add to or replace existing records MBROPT
Create the to-file CRTFILE
Print copied and/or excluded records PRINT2 X X X X X X
Select by record format RCDFMT
Select by relative record number FROMRCD X X X

TORCD X X X
Select by key field value FROMKEY

TOKEY
Specify number of records to copy NBRRCDS X X X
Select by character content INCCHAR X X
Select by field value INCREL
Process different database record formats FMTOPT
Update sequence number and/or date SRCOPT
Specify start value and increment SRCSEQ
Print character and/or hex format OUTFMT2 X X X X X X
Maximum recoverable errors allowed ERRLVL X
Disregard or include deleted records COMPRESS

1 If the from-file and to-file are diskette files, you must specify that the to-file be spooled [SPOOL(*YES)] on a CRTDKTF,

CHGDKTF, or OVRDKTF command.

2 You can specify a program-described printer file so that the copy will produce a list with no special formatting or page headings,
or you can specify TOFILE(*PRINT) to produce a formatted list. You can specify PRINT(*COPIED) to produce a formatted list
of the copied records, and you can specify PRINT(*EXCLD) to produce a formatted list of the records excluded by the
INCCHAR or INCREL parameter. When you request a list by specifying the TOFILE(*PRINT) parameter, the OUTFMT param-
eter specifies whether the data is printed in character or in both character and hexadecimal form.

Basic Copy Function

As indicated in Table 4-2 on page 4-4 and
Table 4-3, you can copy from a physical or logical
database file, open query file, diskette file, tape
file, or inline data file. The to-file can be a phys-
ical database file, diskette file, tape file, program-
described printer file, or *PRINT. When
TOFILE(*PRINT) is specified, the CPYSRCF
command uses a different format from the other
copy commands. This format is organized to
show source information in a more readable
format and for multiple member copies, the
members are copied and listed in alphabetical
order.

If you are copying from a database file and the
to-file does not exist, you must specify
CRTFILE(*YES) and identify the file name and
library name on the TOFILE parameter in order to
create the to-file. You cannot copy from a diskette
to a diskette unless the to-file is spooled and a
diskette spooling writer is not active.

The from-file (not including the CPYFRMQRYF
command where the from-file is not opened),
to-file, and the QSYSPRT printer file (if
TOFILE(*PRINT), PRINT(*COPIED), or
PRINT(*EXCLD) is specified) are opened with the
SHARE(*NO) attribute. Because the copy may
not function correctly with a shared file, it will end

Chapter 4. Copying Files 4-5

with an error message if the from-file, to-file, or
QSYSPRT printer file is overridden to
SHARE(*YES) and the file has already been
opened in the job.

If you specify TOFILE(*PRINT), the records are
copied to the IBM-supplied printer file QSYSPRT,
and the list is formatted by the OUTFMT param-
eter.

If you do not want a formatted list or if you want to
use first-character forms control
(CTLCHAR(*FCFC) on the Create Printer File
(CRTPRTF) or Override with Printer File
(OVRPRTF) command), you should specify a
program-described printer file name (such as
QSYSPRT) instead of *PRINT on the TOFILE
parameter.

File Types

When the from-file and to-file are different types
(source and data), the following is true. For the
CPYFRMQRYF command, the from-file is always
treated as a data file:

* If the from-file or to-file is a device file (or an
inline data file), the copy function will automat-
ically add or delete the source sequence
number and date fields for each record
copied.

« If the from-file and to-file are database files,
you must specify FMTOPT(*CVTSRC) to
perform the operation. The sequence number
and date fields are added or deleted as they
are for a device file, and the data part of each
record is copied without regard to the field
definitions in the file record formats. For a
source physical to-file, the SRCSEQ param-
eter can be used to control how sequence
numbers are created if SRCOPT(*SEQNBR)
is also specified.

Record Sequence

The sequence in which records are organized in a
database file is called the access path. There
are two types of access paths: keyed sequence
and arrival sequence. With the copy function,
you can process records in a database file in
either arrival sequence or keyed sequence. An
arrival sequence copy transfers records in the
order in which they physically exist in the from-file.

4-6 AS/400 Data Management Guide

This order is represented by relative record
numbers. The relative record number is the posi-
tion where the records physically exist in storage.
Because records are always added to the end of
the file, the relative record number represents the
order in which records arrived in the file.

A keyed sequence copy selects and transfers
records by key value from a keyed physical file.
This may result in a different physical order in the
to-file. The to-file will be a reorganized version of
the from-file. The relative record number of a spe-
cific record may change when a file is copied by
key value:

Relative
Record Arrival Keyed
Number Sequence Sequence
1 1011 0016
2 0762 0762
3 0810 0810
4 3729 1011
5 0016 3729

You can copy a keyed physical file in arrival
sequence by specifying the FROMRCD or TORCD
parameter on the copy commands. When you do
this, the keyed sequence access path is not used
to retrieve the records in key sequence. The
records are retrieved in arrival sequence. This is
helpful when the physical relative record location
in the file is significant and needs to remain the
same as it is in the original file. Specifying
FROMRCD(1) is a good way to copy all the
records in arrival sequence. Copying a physical
file in arrival sequence instead of keyed sequence
is also faster.

The kind of copy you run is determined by the
type of from-file and the method of selecting
records to copy. In general, files are copied using
their keyed sequence, if they have one, otherwise,
their arrival sequence. For more information on
the selection methods, refer to “Selecting Records
to Copy” on page 4-16.

A copy from a keyed file to a keyed file usually
places records at the end of the to-file in key field
order, by the from-file key, regardless of their
physical order in the from-file. But if you select
records in the from-file by relative record number
(using the FROMRCD or TORCD parameter), they
are physically placed at the end of the to-file in
relative record number order, regardless of their

keyed sequence in the from-file. The following
example shows the result of a copy command
specifying from record 3 to record 5:

FROM-FILE TO-FILE

Relative Relative

Record Record

Number Key Number Key
1 1011 . -

2 0762 . ---

3 0810 | Arrival 1401 0810
4 3729 Sequence 1402 3729
5 0016 | Copy 1403 0016

RSLH715-0

When the to-file has a keyed sequence, the
records appear in correct order in the to-file when
using the keyed sequence access path. A copy
by relative record number always copies by arrival
sequence.

Resending Copy File Completion
Message

If a copy command is run from a CL program, the
completion message indicating the number of
records copied is not sent directly to the system
operator. You can direct this message to the
system operator by resending it (SNDPGMMSG
command) from the CL program, using the fol-
lowing CL program as an example:

PGM

DCL &MSGID TYPE(*CHAR) LEN(7)

DCL &MSGDTA TYPE(*CHAR) LEN(82)

CPYF FROMFILE(LIB1/XXX) TOFILE(LIB2/XXX) +
MBROPT (*ADD)

RCVMSG MSGID(&MSGID) MSGDTA(&MSGDTA) +
MSGTYPE (*COMP) RMV (*NO)

SNDPGMMSG MSGID(&MSGID) MSGF(QCPFMSG) +
MSGTYPE (*INFO) TOMSGQ(QSYSOPR) +
MSGDTA (&MSGDTA)

ENDPGM

The copy function sends one of the following com-
pletion messages for each from-file member/label
successfully copied to the to-file:

e CPC2955 is the normal copy completion
message.

* CPC2956 is used when COMPRESS(*NO) is
specified.

e CPC2957 indicates that no records were
copied.

Monitoring for Copy Errors

The escape message CPF2817 is sent to indicate
many different error conditions. Except for the
empty from-file member case which is described
later, when this message is sent:

* A physical file is not created (even if
CRTFILE(*YES) was specified on a copy
command).

* No members are added to a to-file that is a
physical file.

* No to-file member is cleared (even if
MBROPT(*REPLACE) was specified).

* The to-file is not opened, so no file is created
on a diskette or tape volume. If the to-file is
spooled, no spooled file is created.

e No records are copied.

- The CPF2817 escape message is always pre-

ceded by at least one diagnostic message that
indicates the specific error condition. The
message identifier of the diagnostic message
which immediately precedes the CPF2817 escape
is used as message replacement data (MSGDTA
parameter on the SNDPGMMSG command) for
the CPF2817 escape message. This allows you
to monitor for specific error cases from the
CPF2817 escape message by using the CMPDTA
parameter on the MONMSG command.

For example, message CPF2802 is a diagnostic
that indicates the from-file cannot be found. You
can monitor for just the from-file not found con-
dition as follows:

PGM
/* The replacement text of escape
CPF2817 contains the msg ID
CPF2802 for the 'from-file not
found' condition */
CPYF FROMFILE(NOLIB/NOFILE) TOFILE(D504/KEY) +
FROMMBR (NOMBR) TOMBR(MBR1) MBROPT (*ADD)
MONMSG MSGID(CPF2817) CMPDTA(CPF2802) +
EXEC (SNDPGMMSG TOPGMQ(*EXT) +
MSG('File NOFILE in NOLIB not found'))
ENDPGM

Any error other than from-file not found,
including any other error reported with a CPF2817
escape message, causes a function check in this
program because the MONMSG command applies
only to the CPF2817 escape when it has the
compare data from message CPF2802.

Chapter 4. Copying Files 4-7

If you are running the CPYFRMQRYF command,
it does not normally close the open query file after
completing the copy. However, if you are running
the CPYFRMQRYF command from a command
entry line, any error messages occurring after the
OPNQRYF command is successfully run will close
the file unless TYPE(*PERM) was specified on the
OPNQRYF command. The system automatically
runs a Reclaim Resources (RCLRSC) command if
an error message occurs. If the OPNQRYF
command specified TYPE(*PERM), the file is not
automatically closed by the system.

The following messages can be sent as diagnostic
messages immediately followed by a CPF2817
escape message. Some of these messages can
also be sent as other message types (such as an
informational or escape message). When the
message is sent as a diagnostic message type,
the message identifier appears in the replacement
text of the CPF2817 escape message. You can
monitor the condition by using the CMPDTA
parameter on the MONMSG command:

CPD2968 CPF2813 CPF2844 CPF2874
CPD2969 CPF2814 CPF2847 CPF2877
CPD2970 CPF2816 CPF2848 CPF2878
CPD2971 CPF2819 CPF2849 CPF2879
CPD2972 CPF2820 CPF2851 CPF2881
CPD2973 CPF2821 CPF2853 CPF2883
CPD2974 CPF2822 CPF2854 CPF2884
CPD2975 CPF2823 CPF2855 CPF2890
CPD2976 CPF2825 CPF2856 CPF2891
CPD2979 CPF2826 CPF2857 CPF2893
CPD2980 CPF2827 CPF2860 CPF2960
CPD2981 CPF2831 CPF2861 CPF2962
CPF2801 CPF2832 CPF2862 CPF2963
CPF2802 CPF2833 CPF2863 CPF2965
CPF2803 CPF2834 CPF2864 CPF2969
CPF2804 CPF2836 CPF2865 CPF9807
CPF2805 CPF2837 CPF2868 CPF9808
CPF2806 CPF2839 CPF2869 CPF9820
CPF2808 CPF2840 CPF2870 CPF9830
CPF2810 CPF2841 CPF2871

CPF2811 CPF2842 CPF2872

CPF2812 CPF2843 CPF2873

Monitoring for Zero Records in
the From-File

There are some special considerations for copy
when the from-file is a physical or logical file and
one or more members to be copied are empty. A
member is considered empty in the following
cases:

4-8 AS/400 Data Management Guide

* |f COMPRESS(*NO) is specified on the CPYF
command and the from-file member contains
no records.

» |f COMPRESS(*YES) is specified or assumed
for any copy command and the from-file
members contain no undeleted records.

Members copied involving record selection
(CPYFRMQRYF command or the INCCHAR and
INCREL parameters of the CPYF command) that
produce no records are not considered empty.

When the to-file is a printer file (including *PRINT),
or when the to-file is a physical file and
MBROPT(*ADD) is specified, empty from-file
members are copied because no existing data will
be destroyed. Each member copied is identified
by a normal copy completion message. If the
to-file is spooled, an empty spooled file is
produced for each empty from-file member. If the
CPYF command PRINT parameter specifies
*COPIED or *EXCLD, the empty members are
shown in the lists with no records printed.

Except for the CPYFRMQRYF command, an
empty from-file member is never copied to a
diskette or tape file, or to a physical file when
MBROPT(*REPLACE) is specified. Empty from-
file members are skipped for these types of to-
files, and a CPF2869 message is sent (as either
an informational or diagnostic message) to identify
each empty member. The empty members are
skipped to avoid destroying existing data. When
an empty from-file member is skipped, the fol-
lowing considerations apply:

* A tape or diskette file is not produced on the
output volume. If the diskette file is spooled,
no spool output file is created.

* An existing to-file physical file member is not
cleared.

* If the to-file does not exist and
CRTFILE(*YES) was specified on a copy
command, a physical file is created.

* If the to-file is a physical file and the to-file
member does not exist, a member is added to
the file.

* [If the CPYF command PRINT parameter
specifies “COPIED or *EXCLD, the empty
members are not shown in the lists.

When the copy command specifies a generic
name or *ALL for the FROMMBR parameter, each
empty from-file member skipped is identified by

message CPF2869, sent as an informational
message. If all the from-file members are
skipped, a CPF2870 diagnostic message is sent
after all the CPF2869 informational messages, fol-
lowed by a CPF2817 escape message.

When the copy command specifies a single
member name or *FIRST for the FROMMBR
parameter, or when there is an ovetrride for the
from-file that forces a single member to be pro-
cessed, an empty member that is skipped is iden-
tified by message CPF2869 sent as a diagnostic
message. The CPF2869 diagnostic message is
followed by a CPF2817 escape message.

In the following example, the from-file and to-file
are both database files and EMPTY1 and
EMPTY2 are empty members in the from-file.

PGM
/* No need to monitor for zero records
when MBROPT (*ADD) specified */

CPYF FROMFILE(D504/GEORGE) TOFILE(D504/KEN) +
FROMMBR(EMPTY1) TOMBR(MBR1) MBROPT (*ADD)

CPYF FROMFILE (D504/GEORGE) TOFILE(D504/KEN) +
FROMMBR (EMPTY2) TOMBR(MBR2) MBROPT (*REPLACE)

MONMSG MSGID(CPF2817) CMPDTA(CPF2869) +
EXEC(CLRPFM FILE(D504/KEN) MBR(MBR2))

/* Monitor for zero records and
send a message when all members
to copy are empty */

CPYF FROMFILE(D504/GEORGE) +
TOFILE(D504/NEWFILE) FROMMBR(EMPTY*) +
TOMBR(NEWMBR) MBROPT (*REPLACE)

MONMSG MSGID(CPF2817) CMPDTA(CPF2870) +
EXEC (SNDPGMMSG TOPGMQ(*EXT) +
MSG('AT1 members to copy are empty'))

ENDPGM

For the first CPYF command, MBROPT(*ADD) is
specified, so an escape message is not sent to
the program because of the empty from-file
member. Note that if MBR1 does not exist before
the copy, it is added to the to-file (if either the
from-file member is empty or contains data).

For the second CPYF command, copy does not
clear the to-file member when the from-file
member is empty, so the MONMSG command
after the second CPYF command starts the
CLRPFM command to clear the to-file member
when the from-file member is empty.

For the third CPYF command, the CPF2817
escape message has compare data of CPF2870 if
all members to be copied are empty because the

generic from-file member name, EMPTY?,
requests that multiple members be copied.

Creating a Duplicate To-File
Member

When your application requires an exact duplicate
of the records in the to-file member (if either the
from-file is empty or contains data), an alternative
solution is to use the Clear Physical File Member
(CLRPFM) command:

CLRPFM FILE(X) MBR(XYZ)
CPYF FROMFILE(Y) TOFILE(X) TOMBR(XYZ) +
MBROPT (*ADD)

Because MBROPT(*ADD) is specified, the CPYF
command completes normally even if there is no
data in file Y. MBR(XYZ) in file X contains an
exact duplicate of the records in the member in
file Y.

CPYFRMQRYF Command
Support for CCSIDs

The Copy from Query File (CPYFRMQRYF)

acter and DBCS fields. The Open Query File
(OPNQRYF) command converts all character and
DBCS fields to the current job CCSID, except for
fields that have a CCSID of 65535 or where *HEX
is specified on the MAPFLD parameter. If the
current job CCSID is 65535, then no conversions
are done by OPNQRYF. The CPYFRMQRYF
command may also do conversions to the to-file
field CCSIDs, so it is possible that double conver-
sions will be done and data may be lost. To avoid
the possibility of doing double conversions,
change the job CCSID to 65535 before doing an
OPNQRYEF if you plan to do a CPYFRMQRYF.

CPYFRMQRYF uses a modified query format,
which is the same as the open query file format
except for the CCSIDs for character and DBCS
fields. The CCSIDs in the modified query format
are determined according to the following:

« If the OPNQRYF job CCSID is 65535, all
character and DBCS fields in the modified
query format have the same CCSIDs as the
open query file format.

 |If the OPNQRYF job CCSID is not 65535, all
character and DBCS fields in the modified
query format have their CCSIDs reset to the

Chapter 4. Copying Files 4-9

associated single-byte, mixed or double-byte
CCSIDs of the OPNQRYF job CCSID, based
on the field type. Fields with a CCSID of
65535 remain unchanged. If there is no asso-
ciated mixed or double-byte CCSID for the
OPNQRYF job CCSID, 65535 is used.

More information on CCSIDs can be found in the
National Language Support Planning Guide.

CPYSRCF Command Support for
CCSIDs

Using the Copy Source File (CPYSRCF)
command automatically converts data in the from-
file to the to-file CCSID. If you do not want the
character data converted, use the CPYF
command with FMTOPT(*NOCHK).

Copy Commands Support for
Null Values

You can copy files containing null-capable fields
using the CPYF and CPYFRMQRYF commands.
The FMTOPT parameter allows mapping of null-
capable fields. The INCREL parameter allows
selection of records based on whether a field is or
is not null.

While copying the records to the to-file, the fol-
lowing commands ignore null values in the from-
file:

CPYTOTAP CPYTODKT

CPYFRMTAP CPYFRMDKT

The following conditions or values on the CPYF or
CPYFRMQRYF command ignore null values in the
from-file while copying the records to the to-file:

FMTOPT(*NOCHK)
FMTOPT(*CVTSRC)
Device to-file

Record selection involving null values may still be
done, but only the user-specified or default value
in the buffer (rather than a null value) is copied to
the to-file. Null values cannot be preserved in
these instances. Any print listings produced when
a copy command is run (including

4-10 AS/400 Data Management Guide

TOFILE(*PRINT), PRINT(*COPIED), and
PRINT(*EXCLUDE)) also ignore null values.

Adding and Replacing Records
(MBROPT Parameter)

(CPYF, CPYFRMDKT, CPYFRMQRYF,
CPYFRMTAP, and CPYSRCF commands)

To copy to a physical file, you must either specify
on the MBROPT parameter that copied data (for
the to-file member) is to be added to (*ADD), or
entirely replace (*REPLACE) existing data (in the
to-file member). The default value for the
CPYSRCF command is *REPLACE, which clears
existing records in the receiving member of the
to-file before replacing them with records copied
from the from-file. On copy commands other than
CPYSRCEF, the default value *NONE is valid only
for copying to a device file.

By specifying *REPLACE, you essentially clear the
member. The copied records are the only records
in the member when the operation is completed.
You must have authority to clear the member in
order to specify MBROPT(*REPLACE).

When you specify *ADD, each record copied is
added to the end of the existing records in the
member. It is important to note that this is always
true, even for keyed files, though with keyed files,
the added records appear to be merged in key
sequence when accessed through a keyed access
path. When copying from query files, the relative
record numbers of the resulting file may not corre-
spond to those in the original file.

When *ADD is specified, the copy completes
normally even if the from-file contains no records.

For copy commands except the CPYFRMQRYF
command, when *REPLACE is specified, copy
command processing fails if the from-file does not
contain any records. When *REPLACE is speci-
fied on the CPYFRMQRYF command, the to-file
member will be cleared if the open query file con-
tains no records. For three copies with
MBROPT(*ADD) to a database file that is not
keyed, the resulting to-file would look like

Figure 4-1.

Relative Relative

Record Record
Number File A Number To-File Member
1
2
i E— File A
2 3 —
3 L 4
4 (5)
6
7
———>4 8 File B
9
File B 10
1 ‘11 —_—
2 12 —
A —>< 13 ____ [FiecC
a | 14 —
5 | ...
6 | ...
7
File C
1
2|
3|
RV2H078-0
Figure 4-1. Result of Copies with MBROPT(*ADD) Specified
See “Adding or Changing Source File Sequence erations in this operation, and “Copying Deleted
Number and Date Fields (SRCOPT and SRCSEQ Records (COMPRESS Parameter)” on page 4-23
Parameters)” on page 4-35 for source file consid- for considerations for deleted records.

Chapter 4. Copying Files 4-11

If MBROPT(*ADD) is specified, records are always
physically added at the end of the file, even if it is
a keyed sequence file. In the following illustration,
FILEDB1 is a keyed physical from-file, and
FILEDB2 is a keyed physical to-file. The files are
shown as they physically appear in storage.
FILEDBZ2 already has three records in it.

FILEDBH1 FILEDB2
Key Key
6 £ 9
xisting
3 Records 54
1 24
7
4
2
5

Keyed Database
From-File in
Arrival Sequence

Keyed Database
To-File in Arrival
Sequence

RV2H079-0

If you specify MBROPT(*ADD), FROMKEY (1 2),
and TOKEY(1 5), four records are added in key
field order to the end of FILEDB2 as shown in the
following figure.

FILEDBH1 FILEDB2
Key Key

6 E 9

xisting

3 Records 54

1 24

7 2

4 Added 3

P Records 4

5 5

Keyed Database
From-File in
Arrival Sequence

Keyed Database
To-File in Arrival
Sequence

MBROPT(*ADD)
FROMKEY(1 2)

TOKEY(1 5) RV2H080-0

The added records, however, appear to be
merged in the new file when viewed through a
keyed sequence access path as shown in the fol-
lowing figure.

4-12 AS/400 Data Management Guide

Relative

FILEDB2 Record FILEDB2

Key Number Key
[e '
Existi 9 1 X 2 :
xisting ' 1
Records 54 2 ' 3 ;
24 3 ' 4 :
2 4 L |5 :
Added 3 5 N 5
Records 4 6 : 24 :
5 7 '. 54 E

Keyed Database
To-File in Arrival
Sequence

Keyed Access
View of To-File

RV2H081-0

Several ways to select records for copying are
explained in this chapter. One method is selection
by relative record number. (See “Selecting
Records Using Relative Record Numbers
(FROMRCD and TORCD Parameters)” on

page 4-17.) Using the preceding example, if you
selected records to copy to a third file from
FILEDB2 by relative record number, from number
3 through 5, you would copy the records with a
key value of 24, 2, and 3, not 4, 5, and 9.

Creating the To-File (CRTFILE
Parameter)

(CPYF and CPYFRMQRYF commands)

To copy a physical or logical file when there is no
existing to-file to receive the data, you can create
the to-file by specifying CRTFILE(*YES). The
name of the new to-file is specified on the TOFILE
parameter and must be qualified with the name of
an existing library for which you have the required
authority.

If copy is used to create the to-file, then the to-file
specified cannot be overridden to a different file or
library.

If the from-file is a logical file or if CPYFRMQRYF
is used, any variable-length fields in the physical
file created by the copy operation have an allo-
cated length of zero.

CRTFILE(*YES) also adds members in the newly
created file. See the section on adding members
later in this chapter.

Because no records exist in the newly created file
and member, the MBROPT parameter is ignored,
and records are automatically added to the new
file. An error occurring during copy processing
after a file is created and/or members are added
has no effect on the newly created file and/or
added members. If the CPYF command is used,
the to-file that is created has the same record
format and type of access path as the from-file.
The text of the from-file is used as the text for the
to-file. The text of from-file members that are
copied is used as the text of any to-file members
created. If the from-file is a logical file with mul-
tiple record formats, the to-file is created with the
record format specified on the RCDFMT param-
eter on the CPYF command. (See “Selecting
Records Using a Specified Record Format Name
(RCDFMT Parameter)” on page 4-16.) When the
from-file is a logical file, the following physical file
attributes are assigned by the system:
SIZE(*NOMAX), ALLOCATE(*NO), and
CONTIG(*NO). If the from-file is a logical file and
its keyed access path was created with the
*NONE keyword specified for all key fields in the
source DDS, then the physical to-file is created
with an arrival sequence access path.

When copying from a query file to create a phys-
ical file, the file is given attributes applicable to a
physical file that match the first file specified on
the FILE parameter for the OPNQRYF command.
However, some of the attributes are assigned by
the system. The file is created with
CONTIG(*NO), SIZE(*NOMAX), ALLOCATE(*NO),
AUT(*NORMAL), and FILETYPE(*DATA). The file
is created with a single format using the modified
query format. See “CPYFRMQRYF Command
Support for CCSIDs” on page 4-9. The name,
type, length, null capability, date or time format,
separators, and decimal positions attributes of
each field in the format specified are used. Other
field attributes are not used. The file is created
without key fields and is an arrival sequence phys-
ical file.

If you specify CRTFILE(*YES) on the Copy File
(CPYF) command, the file level and the format
level identifiers of the new to-file are identical to
the file level and the format level identifiers of the
from-file.

If you specify CRTFILE(*YES) on the Copy From
Query File (CPYFRMQRYF) command, the file

level and the format level identifiers of the new
to-file are generated at the time the new to-file is
created. In most cases, the format level identifier
of the new to-file is the same as the format level
identifier of the format specified in the FORMAT
parameter of the Open Query File (OPNQRYF)
command. In some cases, the OPNQRYF
command changes the format of the new to-file.
For example, the format of the new to-file may
become null-capable when the OPNQRYF
command uses one of the following grouping func-
tions:

¢ %STDDEV
* %VAR
* %SUM
* %AVG
* %MIN
* %MAX

A new to-file with a changed format has a format
level identifier that is different from the format level
identifier specified in the OPNQRYF command.

For copy to create a physical file for the to-file,
you must have authority to the Create Physical
File (CRTPF) command.

When a local physical file is created by the Copy
File (CPYF) command, the created to-file is given
all the authorities of the from-file. These authori-
ties include public, private, and authorization lists.

When a local physical file is created by the Copy
from Query File (CPYFRMQRYF) command, the
created to-file is given all the authorities of the first
file specified on the FILE parameter of the corre-
sponding Open Query File (OPNQRYF) command.
The authorities include public, private, and authori-
zation lists.

In both cases (CPYF and CPYFRMQRYF), the
owner of the created to-file is the user profile
running the copy command. This is true unless
the user is a member of a group profile and has
OWNER(*GRPPRF) specified for the profile. If
the user profile specifies OWNER(*GRPPRF), the
group profile becomes the owner of the to-file. In
this case, if the user profile running the copy
command does not have sufficient authority to add
a member or write data to the new file, then the
copy command fails. When the created to-file is
owned by the user rinning the copy command,
the user inherits *ALL authority to the object.

Chapter 4. Copying Files 4-13

The created to-file does not maintain the file capa-
bilities of the from-file. The to-file allows update,
delete, read, and write operations, regardless of
whether these operations were allowed on the
from-file.

If the number of records copied into a member is
greater than the maximum size of the created
to-file, the to-file is extended without intervention
by the system operator.

If the from-file is an SQL table, the created to-file
will be a physical file that is not an SQL table.

Selecting Members or Labels to
Copy (FROMMBR, FROMLABEL,
TOMBR, and TOLABEL
Parameters)

Table 4-4 on page 4-15 lists the commands
where the parameters relating to selecting
members or labels to copy are valid.

For database files, you can specify the name of
the from-file member to be copied on the
FROMMBR parameter and the name of the to-file
member that is to receive the copied records on
the TOMBR parameter. A special value *FIRST
can also be specified to copy from or to the first
member (in creation order) in the database file.

For diskette or tape files, you can specify the label
identifier of the data file to be copied on the
FROMMBR or FROMLABEL parameter and the
label identifier of the data file that is to receive the
copied records on the TOMBR or TOLABEL
parameter. If the special value *FIRST, *DKTF, or
*TAPF is specified on the copy command, then
the label from the device file description is used.

If TOMBR (*FIRST) is specified and the to-file is a
diskette or tape file, no label identifier is specified
by the copy operation. Therefore a label identifier
(LABEL parameter) must be specified in the
device file on an OVRDKTF command (for a
diskette file), or on an OVRTAPF command (for a
tape file).

If the from-file is a database or diskette file, a
generic name can be specified on the FROMMBR
or FROMLABEL parameter. All members or
labels that start with a character string you speci-
fied for the generic name are copied. To specify a

4-14 AS/400 Data Management Guide

generic name, enter the starting character string
that each member/label has in common, and
follow it with an * (asterisk). For example, if you
specified FROMMBR(ORD?), all database
members or diskette labels starting with ORD
would be copied.

If a generic name is specified for the
FROMLABEL parameter on the CPYFRMDKT
command and a LABEL parameter value is also
specified on an Override Diskette File (OVRDKTF)
command, only the single-file label identifier speci-
fied on the override is copied.

You can also indicate on the FROMMBR or
FROMLABEL parameter that you want to copy all
the members from a database file or all the labels
from a diskette file by specifying special value
*ALL. If FROMLABEL(*ALL) is specified on the
CPYFRMDKT command and a LABEL parameter
value is also specified on an OVRDKTF
command, only the single-file label identifier speci-
fied in the override is copied.

You can copy a generic set or all members/labels
in the following copy operations:

Diskette To: Database To:
Database (physical file) Database (physical file)
Diskette (Note 1) Diskette

Tape (Note 2) Tape (Note 2)

Printer Printer

“PRINT *PRINT

Notes:

1. The to-file must be spooled for diskette-to-diskette
copy operations.

2. Multiple from-file members or labels can only be
copied to a single tape file label.

If a generic set or all labels are being copied from
a diskette and a label being copied is continued

on another diskette volume, then all the labels on
the continuation volume are copied (or checked if
they should be copied where a generic label was

specified).

Multiple database members or diskette labels can
be copied to corresponding like-named to-file
members or labels. They can also be copied and
concatenated, one after another, into a single
to-file member or label. If the to-file is a spooled
file, then each member/label is copied to a sepa-
rate spooled file. If TOFILE(*PRINT) is specified,

Table 4-4. Valid Member or Label Parameters for Copy Commands

FROMMBR' FROMLABEL TOMBR TOLABEL
CPYF X X
CPYFRMDKT X X
CPYFRMQRYF X
CPYFRMTAP X X
CPYSRCF X X
CPYTODKT X X
CPYTOTAP X X

1 FROMMBR is not a parameter on the CPYFRMQRYF command because the members to be queried are speci-

fied on the OPNQRYF command.

then all the members/labels are copied to a single
spooled file, with the records for each
member/label starting on a new page.

A single member or label or multiple members or
labels can be copied to corresponding like-named
to-file members or labels by specifying
TOMBR(*FROMMBR), TOLABEL(*FROMMBR), or
TOMBR(*FROMLABEL) depending on the copy
command used. If the to-file is tape, this cannot
be specified unless you are copying from a single
from-file member or label. *FROMMBR is the
default value for the TOMBR parameter on the
CPYSRCF command, which causes the from-file
members to be copied to like-named to-file
members.

If the from-file is diskette or tape, the from-file
label is used as the label for a diskette or tape
to-file. [f the to-file is a database file, the non-
blank characters to the extreme right of the from-
file label are used for the to-file member name, up
to a maximum of either 10 characters or to the
period at the extreme right in the from-file label.
The copy operation ensures that only a valid
member name is used for a database to-file, but
does not ensure that a to-file label is valid for tape
or diskette, so a label identifier that is nonstandard
or not valid may be used for the to-file.

If the from-file is a tape file that is not labeled,
then a to-file member or label name is created
that corresponds to the data file on the tape from-
file in the form of CPYnnnnn, where nnnnn is the
tape sequence number of the data file.

For a database from-file or to-file, if a MBR
parameter is specified on an OVRDBF (Override
Database File) command, then the override
member name is used instead of the value speci-

fied on the copy command. If the TOFILE param-
eter is specified with no MBR parameter value on
the OVRDBF command, then the first member (in
creation order) in the database file is used instead
of the member specified on the copy command.
For a diskette or tape from-file or to-file, if a
LABEL parameter is specified on an OVRDKTF or
OVRTAPF command, respectively, the override
label name is used instead of the label specified
on the copy command.

If multiple members/labels are being copied to cor-

AnrmamAlie N | lan ;m~rAarmlhAvas IhAala (4#land

i‘t::,punuulg Ilr\b' rarrieyu LU IIIU lIIUIIIUUIbIIdUUIb u Id.l

is, TOMBR(*FROMMBR), TOLABEL (*FROMMBR),
or TOMBR(*FROMLABEL) was specified), then an
override to a single to-file member/label is not
allowed unless the from-file is also overridden to a
single member/label.

If a tape or diskette label is specified in the
FROMMBR or TOMBR parameter, it can have a
maximum length of 10 characters. If the label
contains special characters or more than 10 char-
acters, it must be specified on one of the following
commands:

e Create Tape File (CRTTAPF)

e Change Tape File (CHGTAPF)

¢ Override with Tape File (OVRTAPF)

¢ Create Diskette File (CRTDKTF)

¢ Change Diskette File (CHGDKTF)

¢ Override with Diskette File (OVRDKTF)

Adding Members to the To-File

The copy function adds a member to the to-file
when the member does not exist. The member
name used is either the TOMBR parameter value
from the copy command, or the member name
specified in an override for the to-file.

Chapter 4. Copying Files 4-15

If TOMBR(*FROMMBR) or
TOMBR(*FROMLABEL) is specified on the copy
command (and is not overridden), the from-file
member names or label identifiers are used for the
members added to the file.

If TOMBR(*FIRST) is specified on the copy
command, or if there is an override that specifies
a TOFILE parameter with no MBR parameter,
then no member name is known. The copy func-
tion does not add a member in this case unless
CRTFILE(*YES) was specified on the copy
command and the copy function must create the
to-file.

Except for the CPYFRMQRYF command, when
the copy function creates the to-file without a spe-
cific member name specified, the from-file name is
used for the member that is added to the to-file.
When using the CPYFRMQRYF command, the
member added to the physical file created by the
copy operation has the name specified by the
TOMBR parameter. If TOMBR(*FIRST) is speci-
fied, the to-file member has the same name as the
to-file file name specified on the CPYFRMQRYF
command TOFILE parameter. The MBROPT
parameter value is ignored when the to-file is
created, and records are added to the new file
members.

If the from-file is a database file, the member text
and SEU source type of the from-file member are
used for the member added to the to-file. If the
from-file is a device or inline data file, the text is
taken from message CPX0411, and the SEU
source type is TXT. If both the from-file and to-file
are database source files, the SEU source type
information in the added member will be the same
as the from-file member. The SHARE(*NO) and
EXPDATE(*NONE) attributes are always assigned
to the to-file member when it is added by the copy
operation. The creation date of the new member
is also set to the current system date (not the date
when the from-file member was added).

Selecting Records to Copy

You can select records to be copied based on the
following (parameters given in parentheses):

¢ Record format name when a multiformat
logical file is copied (RCDFMT)

4-16 AS/400 Data Management Guide

¢ Relative record numbers (FROMRCD and
TORCD)

* Record key values (FROMKEY and TOKEY)

¢ Number of records (NBRRCDS)

* One or more character values starting in a
specified position in the record or a field
(INCCHAR)

* Field value in a record (INCREL)

* Deleted records (COMPRESS)

The copy command parameters for record
selection (FROMRCD, TORCD, FROMKEY,
TOKEY, INCCHAR, and INCREL) are not on the
CPYFRMQRYF command because record
selection is provided on the OPNQRYF command.

See the Database Guide for details on record
selection using open query file. For a detailed
description of all considerations for each param-
eter, see the CL Reference manual.

Selecting Records Using a
Specified Record Format Name
(RCDFMT Parameter)

(CPYF command)

When you copy from a logical file to a physical file
and the logical file has more than one record
format, you must specify a record format name
unless you specify FMTOPT(*NOCHK). If
FMTOPT(*NOCHK) is used, then RCDFMT(*ALL)
can be specified to copy all from-file record
formats to the to-file. This record format name is
used to select records to be copied.

In the following example, records are copied from
the logical file ORDFILL to the physical file
INVOICE using the record format ORDHDR:

CPYF FROMFILE(DSTPRODLB/ORDFILL) +
TOFILE(DSTPRODLB/INVOICE) RCDFMT(ORDHDR) +
MBROPT (*ADD)

See “Copying between Different Database Record
Formats (FMTOPT Parameter)” on page 4-25 for
information about what happens when the from-file
and to-file are both database files and their record
formats are different.

When you copy from a logical file that has more
than one record format to a device file, you can
specify either a single record format to be used or
specify RCDFMT(*ALL) to copy using all the
record formats. If the record formats have dif-

ferent lengths, the shorter records are padded with
blanks.

Selecting Records Using Relative
Record Numbers (FROMRCD and
TORCD Parameters)

(CPYF command)

Relative record numbers can be specified for a
copy from any file type except a keyed logical file
(a keyed physical file can be copied in arrival
order if relative record numbers are specified for
the FROMRCD or TORCD parameter). Records
can be copied from a specified record number
(FROMRCD parameter) to a specified record
number (TORCD parameter) or until a specified
number of records (NBRRCDS parameter) has
been copied (see “Selecting a Specified Number
of Records (NBRRCDS Parameter)” on

page 4-20). If the end of the file is reached
before the specified ending record number or
number of records is reached, the copy completes
normally.

When a reiative record number is specified,
records are copied, starting with the specified rela-
tive record number, in the order in which they
physically exist in the database file being copied
from. This is true even if the physical file has a
keyed sequence access path. You can use the
COMPRESS parameter with the FROMRCD and
TORCD parameters to further define which
records are to be selected for copying (see
“Copying Deleted Records (COMPRESS
Parameter)” on page 4-23).

If the from-file is a physical file or a logical file with
an arrival sequence access path, the TORCD
value is a relative record number that counts both
the deleted and undeleted records ahead of it. If
the from-file is a device file or inline data file, the
TORCD value is a record number that includes
only undeleted records (even for an I-format
diskette file).

Deleted records retain their position among
records that are not deleted, but not necessarily
their relative record number when they are copied
if they are in the specified subset and
COMPRESS(*NO) is specified. If
COMPRESS(*YES) is specified, the deleted
records are skipped and are not copied. In this

case, when the record number specified
(FROMRCD parameter) is a deleted record,
copying starts with the first undeleted record that
follows.

In the following example, the records from relative
record number 500 to relative record number 1000
in the file EMP1 are copied to the file EMP1T.

CPYF FROMFILE (PERSONNEL/EMP1) +
TOFILE(TESTLIB1/EMP1T) MBROPT(*REPLACE) +
FROMRCD (500) TORCD(1000)

Note: If you use record numbers to select
records, you cannot use record keys
(FROMKEY/TOKEY parameters) to select records
on the same CPYF command.

Selecting Records Using Record
Keys (FROMKEY and TOKEY
Parameters)

(CPYF command)

Record keys can only be specified to copy from a
keyed database file. Records can be copied from
specified key value (TOKEY parameter) or until a
specified number of records (NBRRCDS param-
eter) is reached (see “Selecting a Specified
Number of Records (NBRRCDS Parameter)” on
page 4-20). If the end of the file is reached
before the specified ending key value or number
of records is reached, the copy completes
normally.

If no record in the from-file member has a key that
is a match with the FROMKEY value, but there is
at least one record with a key greater than the
specified value, the first record copied is the first
record with a key greater than the FROMKEY
value. If the specified key value is greater than
any record in the member, an error message is
sent and the member is not copied.

You can specify *“BLDKEY on the FROMKEY and
TOKEY parameters to use a list of character and
numeric values in their natural display form for the
fields in a key. Each element is converted to the
corresponding key field data type. The com-
posite key value (a key comprised of more than
one field) is provided to the database.

If you specify fewer values than the complete
database key contains, a partial key is built and

Chapter 4. Copying Files 4-17

passed to the database. If you specify more
values than the database key contains, an ending
error occurs. The values are always applied to
the consecutive fields to the extreme left in the
key so that it is impossible to skip key fields.

Character fields are padded on the right with
blanks. Numeric fields are adjusted to the implied
decimal point in the key field with the correct zero
padding.

All regular rules for specifying numeric fields in an
external character format apply. Note that the
floating-point value of *NAN (Not a Number) is not
allowed.

The check made by the copy operation (when the
TOKEY value is specified) is a logical character
comparison between the key string for each
record retrieved and the key string that is specified
explicitly (using the first TOKEY parameter format)
or built implicitly by the copy operation (using the
list of values given for a *BLDKEY specification).
A warning message is sent (but the copy opera-
tion continues) if this comparison gives different
results than the ordering in which the database
identifies the records in the keyed access path.
The order may be different if the key contains
mixed ascending and descending fields, if the key
contains fields for which a sort sequence other
than *HEX is in effect, or if the key contains any of
the following DDS keywords:

ABSVAL Absolute value

ALTSEQ Alternative collating sequence

ALWNULL Allow null

DATFMT Date format (*MDY, *DMY, *YMD,
*JUL, SAA *EUR, or SAA *USA)

DIGIT Digit force

SIGNED Signed numeric

TIMFMT Time format (*USA)

ZONE Zone force

If there are both ascending and descending fields
in the file key, the first (the far left) key field deter-
mines whether the copy operation uses an
ascending or descending key test to look for the
last record to copy.

Using *BLDKEY is the easiest way to specify (and
ensure correct padding) values for packed, binary,
and floating-point fields.

An example of the build-key function is:

4-18 AS/400 Data Management Guide

Key Field Decimal

Number Type Length Precision Value
1 CHAR 6 KEN
2 ZONED 6 2 54.25
3 BINARY 4 1 10.1

You could specify the FROMKEY (or TOKEY)
parameter as follows:

FROMKEY(2 x'D2C5D5404040FQFOF5FAF2F50065")

or, you could use the *BLDKEY value and specify
the FROMKEY as follows:

FROMKEY (*BLDKEY ~ (KEN 54.25 10.1))

Another example using key fields 1 and 2 is:
FROMKEY (2 'KEN 005425")

or, the *BLDKEY value can be specified:
FROMKEY (*BLDKEY (KEN 54.25))

In the following example, the records in the file
EMP1 are copied to the file EMP1T. EMP1T is a
file in a test library. Because you only need a
subset of the records, you specify a from-key
value and a to-key value. Both are full key
values. Note that a 1 specified in the FROMKEY
and TOKEY parameters indicates the number of
key fields to be used in searching the record keys,
starting with the first key field.

CPYF FROMFILE(PERSONNEL/EMP1) +
TOFILE(TESTLIB1/EMP1T) MBROPT (*REPLACE) +
FROMKEY (1 438872) TOKEY(1 810199)

All positions in a key value should be specified,
because if the value is shorter than the key field
length, it will be padded on the right with zeros.
Thus, a 5-position key field specified as
FROMKEY (1 8) causes a search for a key equal
to hex FB00000000. If the key value contains
blanks or special characters, it must be enclosed
in apostrophes.

Note: If you use record keys to select records,
you cannot use relative record numbers
(FROMRCD/TORCD parameters) to select records
on the same CPYF command.

You should not specify COMPRESS(*NO) when
selecting records by record key from a keyed
physical file. Because deleted records are not
contained in the keyed access path of a file, they

are never copied, so the compression is auto-
matic.

Because deleted records are canceled in a copy
by this method, it is also possible that the relative
record numbers have changed in the new file,
even if you have specified MBROPT(*REPLACE).

Specifying Data for Different Field
Types and Attributes

Variable-Length Fields: When the number of
key fields and a value are used to specify the
FROMKEY or TOKEY parameter, the string
should include the 2-byte length field for each
variable-length key field. The variable-length key
field must be padded with blanks so that keys fol-
lowing the variable-length key field are in the
correct position. The data can be specified in
hexadecimal format.

When *BLDKEY is specified on the FROMKEY or
TOKEY parameter for variable-length key fields,
specify the character string without the 2-byte
length field. Only the amount of data entered for
the key value is used for key comparisons. A
zero-length string can be specified for variable-
length key fields.

Date, Time, and Timestamp Fields: When the
number of key fields and a value are used to
specify the FROMKEY or TOKEY parameter, no
conversion of data occurs if the corresponding key
field in the from-file is a date, time, or timestamp
field. The user input string specified must be in
the same format as the date, time, or timestamp
field (including separators). If it is not, a file open
error may occur, or the records copied may not be
the desired result.

If *BLDKEY is specified for the FROMKEY or
TOKEY parameter and the corresponding key field
in the from-file is a date, time, or timestamp field,
the system attempts to convert the user-input key
field value to the format (and separators) of the
from-file field. The following rules apply to the
conversion:

« If the from-field is a date key field, the
system first determines if the user-input key
value is in the same format and has the same
separator as specified in the current job under
which the copy command is running. This can
be *MDY, *DMY, *YMD, or *JUL for the format

and slash (/), hyphen (-), period (.), comma (,),
or blank () for the separator. If the user-input
key value is not in the current job specified
format and separator form, it determines if it is
in one of the Systems Application Architec-
ture* (SAA*) formats (*ISO, *USA, *EUR, or
*JIS). It also determines if it is in a
YYYYDDD form (no separator). If the system
can determine the user-input key value is in
one of these forms, the input string is con-
verted to the actual format (and separator) of
the from-file date field, which is used for the
key comparison. If the user-input string
format cannot be determined or the length or
data value is not valid, a diagnostic message
is issued. The date portion of the user-input
key value must be left justified and can
contain trailing blanks.

If the from-field is a time key field, the
system first determines if the user-input key
value is in the same format and has the same
separator as specified in the current job under
which the copy command is running. This
may be HHMMSS for the format and colon (3),
comma (,), period (.), or blank () for the sepa-
rator. If the user-input key value is not in the
current job specified format and separator
form, the system determines if it is in one of
the SAA formats (*ISO, *USA, *EUR, or *JIS).
If the system can determine the user-input key
value is in one of these forms, the input string
is converted to the actual format (and sepa-
rator) of the from-file time field, which is used
for the key comparison. If the user-input
string format cannot be determined, or the
length or data value is not valid, a diagnostic
message is issued. The time portion of the
user-input key value must be left justified and
can contain trailing blanks.

If the from-field is a timestamp key field,
the system first determines if the user-input
key value is in the SAA format or
YYYYMMDDHHMMSS form. If the system
determines the user-input key value is in one
of these forms, the input string is converted to
the actual SAA timestamp format, which is
used for the key comparison. If the user-input
string format cannot be determined, or the
length or data value is not valid, a diagnostic
message is issued. The timestamp portion of
the user-input key value must be left justified
and can contain trailing blanks.

Chapter 4. Copying Files 4-19

Null-Capable Fields: When the number of key
fields and a value are used to specify the
FROMKEY or TOKEY parameter, the null values
are ignored. Only the buffer default value for
values that are actually null are used for the com-
parison.

When *BLDKEY is specified on the FROMKEY or
TOKEY parameter, none of the *BLDKEY values
can reference a null-capable field. If it does, an
error message is sent.

CCSIDs: When the number of key fields and a
value are used to specify the FROMKEY or
TOKEY parameter, no CCSID conversions are
done on the input string.

When *BLDKEY is specified on the FROMKEY or
TOKEY for character, DBCS-open, DBCS-either,
or DBCS-only fields, the value specified is
assumed to be in the CCSID of the process in
which the copy command is running. Each of
these key values is converted from the job CCSID
to the CCSID of the from-file key field. If no con-
version table is defined or an error occurs while
converting the input key value, a message is sent
and the copy operation ends. If the value can be
correctly converted, the converted value is used to
build the key value that determines the first and
last record to be copied.

DBCS-Graphic Fields: When the number of key
fields and a value are used to specify the
FROMKEY or TOKEY parameter, no conversions
are done on the input string; the input string is
used as is.

When *BLDKEY is specified on the FROMKEY or
TOKEY for DBCS-graphic fields, the DBCS data
should be enclosed in shift-out and shift-in charac-
ters. The DBCS data is assumed to be in the
associated DBCS CCSID of the job CCSID. The
shift-out and shift-in characters are removed
before building the key. If the input string is not
enclosed in shift-out and shift-in (SO-SI) charac-
ters or the data cannot be converted to the DBCS
CCSID of the from-file key field, a message is
sent and the copy operation ends.

4-20 AS/400 Data Management Guide

Selecting a Specified Number of
Records (NBRRCDS Parameter)

(CPYF, CPYFRMDKT, CPYFRMQRYF,
CPYFRMTAP, CPYTODKT, and CPYTOTAP com-
mands)

When you specify a FROMKEY or FROMRCD
parameter, you can specify the number of records
(NBRRCDS parameter) to be copied instead of
the TOKEY or TORCD parameter (you cannot
specify both the NBRRCDS and the TORCD or
TOKEY parameters). The specified number of
records is copied starting with the specified
from-key value or from-record number.

You can specify the NBRRCDS parameter without
specifying the FROMKEY or FROMRCD param-
eter. Records are copied starting with the first
record in the file. Note that the number of records
specified is the number of records actually copied
to the to-file, which includes deleted records in the
from-file if COMPRESS(*NO) is specified, and
does not include records excluded by the
INCCHAR and INCREL parameters.

In the following example, 1000 records in the file
EMP1 are copied to the file EMP1T. Records are
copied from the first member in EMP1 and replace
the records in the first member in EMP1T.

CPYF FROMFILE(PERSONNEL/EMP1) +
TOFILE(TESTLIB1/EMP1T) MBROPT (*REPLACE) +
NBRRCDS (1000)

You can also use the NBRRCDS parameter to
examine a subset of records on a list:

CPYF ~ FROMFILE(PERSONNEL/EMP1) TOFILE(*PRINT) +

FROMRCD(250) NBRRCDS(10) OUTFMT (*HEX)

In the case of a successful copy of an open query
file, the file position is unpredictable. If you want
to run a different program with the same files or
run another CPYFRMQRYF, you must position the
file or close the file and open it with the same
OPNQRYF command. You may position the file
with the Position Database File (POSDBF)
command. In some cases, a high-level language
program statement can be used.

Selecting Records Based on
Character Content (INCCHAR
Parameter)

(CPYF command)

Records can be selected based on the content of
specified characters starting in a specified position
in the record or field. The INCCHAR parameter
can be used with the FROMKEY or FROMRCD
parameter, to select records first by their key
value or relative record number and then by char-
acters in some position in the record or field.

You can test for any character string of 1 through
256 bytes. If the character string contains any
special characters or blanks, the whole string must
be enclosed in apostrophes.

You can also specify “CT (contains) as the oper-
ator for the INCCHAR parameter. This specifies
that each record in the from-file is to be scanned
for the selection character string. You can specify
any valid starting position in the field or record for
the start of the scan, and the data will be scanned
from that position to the byte to the extreme right

of the field or record.

If you specify both the INCCHAR and INCREL
parameters, a record is copied only if it satisfies
both the INCCHAR and INCREL conditions.

The following example tests for all records in the
file DBIN that have an XXX starting in position 80,
and copies them to the file DKTOUT. Because
this example includes testing for positions relative
to the length of the whole record, *RCD must be
specified on the INCCHAR parameter.

CPYF FROMFILE(DBIN) TOFILE(DKTOUT) +
INCCHAR(*RCD 80 *EQ XXX)

If you were testing for an XXX in a position in a
particular field in the record, you would specify the
field name instead of *RCD, and the starting posi-
tion of the character relative to the start of the
field.

CPYF FROMFILE(DBIN) TOFILE(DKTOUT) +
INCCHAR(FLDA 6 *EQ XXX)

A field name cannot be specified if
RCDFMT(*ALL) is specified when copying from a

multiple-format logical file, or if the from-file is a
device file or inline data file.

Specifying Data for Different Field
Types and Attributes

Variable-Length Fields: When *RCD is specified
for the INCCHAR parameter, the starting position
represents the position in the buffer. The 2-byte
length field of variable-length fields must be con-
sidered when determining the position. Use
single-byte blanks (X'40') to pad variable-length
fields if the INCCHAR value spans multiple fields.

Variable-length fields can be specified for the
INCCHAR string when a field name is specified.
The starting position represents the position in the
data portion of the variable-length from-field value.
The number of bytes compared is the number of
bytes in the value specified for the INCCHAR
string. If the actual data in the variable-length
from-field is shorter than the value specified for
the INCCHAR parameter, the from-field data is
padded with single-byte blanks (X'40') for the
comparison.

A zero-length string cannot be specified for the
INCCHAR value.

Null-Capable Fields: The INCCHAR parameter
allows null-capable character-field and null-
capable DBCS-field names to be specified;
however, any logical comparison with a null-field
value tests as false, and the record is not copied.
No special processing is done if the *RCD special
value is entered as the field name. Only buffer
default values for actual null values are compared.

CCSIDs: When *RCD is specified for the
INCCHAR parameter, no conversion is done on
the input string. The byte string entered is com-
pared at the specified position in the record buffer
of the from-file.

When a field name is specified, the input string is
assumed to be in the CCSID of the job in which
the copy command runs. The input string is con-
verted to the CCSID of the from-field. If no trans-
lation table is defined or if an error occurs while
converting the input string, a message is sent and
the copy operation ends. If the value can be cor-
rectly converted, the converted value is used for
record selection.

Chapter 4. Copying Files 4-21

DBCS-Graphic Fields: \When a graphic field is
specified for the INCCHAR parameter, the DBCS
data should be enclosed in shift-out and shift-in
characters. The data is assumed to be in the
associated DBCS CCSID of the job CCSID.
There must be a valid conversion to the field
CCSID or an error occurs. The shift-out and
shift-in characters are removed before doing the
comparison. The position specifies the DBCS
character position in which to begin the compar-
ison.

Selecting Records Based on
Field Value (INCREL Parameter)

(CPYF command)

The INCREL parameter is used to select records
for copying by testing for the value of an entire
field. Unlike the INCCHAR parameter, you can
use the INCREL parameter only when copying
from a database file, and you can test for different
values in different fields on one copy command.

You can use as many as 50 AND and OR
relationships on one INCREL parameter. The OR
relationship is used to group the AND relation-
ships. For example, the following INCREL param-
eter essentially says this: If field FLDA is greater
than 5 and field FLDB is less than 6, select the
record, or if FLDB is equal to 9 (FLDA is any
value), select the record.

INCREL((*IF FLDA *GT 5) (*AND FLDB *LT 6) +
(=OR FLDB *EQ 9))

The value you specify must be compatible with the
field type. Each INCREL relational set must be
enclosed in parentheses.

The value *IF must be specified as the first value
in the first set of comparison values, if there is
only one set or several sets of comparison values.
If more than one set of comparison values are
specified, either *AND or *OR must be specified
as the first value in each set after the first set of
values.

In the following discussion, an IF group refers to
an IF set, optionally followed by one or more AND
sets. An OR group refers to an OR set, optionally
followed by one or more AND sets. All the com-
parisons specified in each group are done until a
complete group, which is a single IF set or OR set

4-22 AS/400 Data Management Guide

having no AND sets following it, yields all true
results. If at least one group has a true result, the
record is included in the copied file.

The first set of comparison values (*IF field-name
operator value) and any AND sets logically con-
nected with the IF set are evaluated first. If the
results in all of the sets in the IF group are true,
the testing ends and the record is copied. If any
of the results in the IF group are false and an OR
group follows, another comparison begins. The
OR set and any AND sets that follow it are evalu-
ated (up to the next OR set). If the results in the
OR group are all true, the record is included. If
any result is false and another OR group follows,
the process continues until either an OR group is
all true or until there are no more OR groups. If
the results are not all true for any of the IF or OR
groups, the record is excluded (not copied to the
to-file).

If you specify both the INCCHAR and INCREL
parameters, a record is copied only if it satisfies
both the INCCHAR and INCREL conditions.

The INCREL parameter cannot be specified if
RCDFMT(*ALL) is specified when copying from a
multiple-format logical file.

Specifying Data for Different Field
Types and Attributes

Variable-Length Fields: Variable-length char-
acter fields are allowed for the INCREL parameter.
Enter the character value without the 2-byte length
field. The length of the data entered determines
the number of bytes used for the comparison. If
the actual data in the variable-length from-field is
shorter than the value specified for the INCREL
parameter, the from-field data is padded with
single-byte blanks (X'40') for the comparison.

Date, Time, and Timestamp Fields: The
INCREL parameter allows date, time, and
timestamp fields. The input field value is com-
pared chronologically to the value in the date,
time, or timestamp field to determine if the record
should be selected. The system attempts to
convert the input string and the actual field value
to an internal form that is chronologically com-
pared. These rules apply to the conversion:

 [f the from-field is a date field, the system
determines if the user-input field value is in

the same format and has the same separator
as specified in the current job under which the
copy command is running. The format could
be *MDY, *DMY, *YMD, or *JUL and could
use a slash (/), hyphen (-), period (.), comma
(,), or blank () for the separator. If the user-
input field value does not use the same format
or separator form of the current job, the
system determines if it is one of the SAA
formats (*ISO, *USA, *EUR, OR *JIS) or if it is
a YYYYDDD form with no separators. If the
system determines the user-input field value is
one of these forms, the input string is con-
verted to an internal form. The from-field is
then converted to its internal form, and the
comparison is made. If the user-input string
format cannot be determined, or the length or
data value is not valid, a diagnostic message
is issued and the copy operation ends. The
date portion of the user-input field value must
be left justified and can contain trailing blanks.

If the from-field is a time field, the system
determines if the user-input field value is in
the same format and has the same separator
as specified in the current job under which the
copy command is running. The format could
be HHMMSS and have a colon (:), comma (,),
period (.), or blank () for the separator. If the
user-input field value is not in the specified
format and separator form of the current job,
the system determines if it is in one of the
SAA formats (*I1SO, *USA, *EUR, or *JIS). If
the system determines the user-input key
value is in one of these forms, the input string
is converted to an internal form. The from-
field is then converted to its internal form, and
the chronological comparison is made. If the
user-input string format cannot be determined
or the length or data value is not valid, a diag-
nostic message is issued and the copy opera-
tion ends. The time portion of the user-input
field value must be left justified and it can
contain trailing blanks.

If the from-field is a timestamp field, the
system first determines if the user-input field
value is in the SAA format or
YYYYMMDDHHMMSS form (no separators).
If the system determines the user-input field
value is in one of these forms, the input string
is converted to an internal form. The from-
field is then converted to its internal form and
the chronological comparison is made. If the
user input string format cannot be determined,

or the length or data value is not valid, a diag-
nostic message is issued and the copy opera-
tion ends. The timestamp portion of the
user-input field value must be left justified and
can contain trailing blanks.

Null-Capable Fields: The INCREL parameter
allows a value of *NULL as input for a field value.
The *EQ and *NE operators can be used with the
*NULL value to test whether a field in a database
file contains the null value or not. *EQ means the
value is null and *NE means the value is not null
when the *NULL value is specified. The *NULL
value is not limited to null-capable fields.

CCSIDs: The input string for character,
DBCS-open, DBCS-either, or DBCS-only fields is
assumed to be in the CCSID of the job in which
the copy command is running. The input string is
converted to the CCSID of the from-field. If no
conversion table is defined or an error occurs
while converting the input string, a message is
sent and the copy operation ends. If the value
can be correctly converted, the converted value is
used for record selection.

DBCS-Graphic Fields: When a graphic field is
specified for the INCREL parameter, the DBCS
data should be enclosed in shift-out and shift-in
characters. The data is assumed to be in the
associated DBCS CCSID of the job CCSID.
There must be a valid conversion to the field
CCSID or an error occurs. The shift-out and
shift-in characters are removed before doing the
comparison.

Copying Deleted Records
(COMPRESS Parameter)

(CPYF command)

You can copy deleted and undeleted records from
one physical file member to another by specifying
COMPRESS(*NO) on a copy command. You may
want to copy deleted records to preserve the rela-
tive record numbers of records copied from the
from-file. If COMPRESS(*NO) is not used, only
records that are not deleted are copied from the
from-file.

To use COMPRESS(*NOQ), the from-file and to-file
must both be physical files, they must both be the
same type (either source or data), and they must
either have identical record formats or

Chapter 4. Copying Files 4-23

FMTOPT(*NOCHK) must be specified to perform
the copy. COMPRESS(*NO) also requires that
you use all the following (default) parameter
values on the copy command:

PRINT(*NONE)
INCCHAR(*NONE)
INCREL(*NONE)
SRCOPT(*SAME)
ERRLVL(0)

COMPRESS(*NO) is not allowed for certain types
of access paths over the to-file, including when
the access path is contained in a logical file and is
based on the to-file member. The following types
of access paths over a to-file member do not allow
COMPRESS(*NO) to be specified:

* Unique keys (UNIQUE keyword specified in
the DDS for the file).

* Select/omit specifications without the DYNSLT
keyword (in the DDS for the file), and imme-
diate or delayed maintenance
(MAINT(*IMMED) or MAINT(*DLY) specified
on the CRTPF or CRTLF command).

* Floating-point key field or logical numeric key
field (in the DDS for the file), and immediate
or delayed maintenance (MAINT(*IMMED) or
MAINT(*DLY) specified on the CRTPF or
CRTLF command). Note that a logical
numeric key field is one of the following:

— A numeric key field in a logical file.

— A field specified as a to field on the JFLD
keyword that has different attributes than
in the based-on physical file.

— A field specified as a sequencing field on
the JDUPSEQ keyword that has different
attributes than in the based-on physical
file.

You cannot specify COMPRESS(*NO) for any of
the following cases:

¢ |f the to-file is being journaled (JRNPF
command).

* If the to-file member is in use, or if any access
path over the to-file member is in use.

 If an EOFDLY wait time is specified for the
from-file on an OVRDBF command.

COMPRESS(*NO) may allow the system to
perform the copy more quickly because records
are transferred in blocks, but this is not always
true. Usually, the COMPRESS(*NO) function

4-24 AS/400 Data Management Guide

does not significantly affect performance. One of
the factors you should consider before you specify
COMPRESS(*NO) is that the internal system func-
tion that must be used to perform this type of copy
invalidates any keyed access paths that use the
to-file member before the records are copied, and
then rebuilds the access paths after the copy is
complete. The run time and resource required to
rebuild the keyed access paths may be larger than
the performance benefit gained by copying deleted
records.

If COMPRESS(*NO) is not specified, the system
may still use the internal functions to perform the
copy, but the choice of how the copy is performed
is based on the number of records in the from-file
and to-file members before the copy, and the
number of keyed access paths over the to-file
member.

If MBROPT(*REPLACE) is specified, all keyed
access paths over the to-file member must be
invalidated and rebuilt, so specifying
COMPRESS(*NO) does not cause any additional
overhead for rebuilding access paths.

If the from-file is a keyed physical file and neither
a FROMRCD nor TORCD relative record number
value is specified on the copy commands to force
the file to be processed in arrival sequence,
COMPRESS(*NO) has no meaning because a
keyed access path never contains any deleted
records.

Printing Records (PRINT,
OUTFMT, and TOFILE(*PRINT)
Parameters)

(CPYF, CPYFRMDKT, CPYFRMQRYF, and
CPYFRMTAP commands)

You can print a list of all records copied or all
records excluded or both. Records can be printed
in character format or in character and
hexadecimal format. The records are printed
using the IBM-supplied printer file QSYSPRT.

You can specify TOFILE(*PRINT) to print these
records to a printed listing.

You can specify *EXCLD on the PRINT parameter
to print only excluded records or *COPIED to print
only copied records. Records are copied or
excluded based on the specifications on the

INCCHAR or INCREL parameter. If both are
specified all the excluded records are in one list,
and all the copied records are in another. If mul-
tiple members are being copied, a list is produced
for each member/label. Excluded records are
printed in the from-file record format, and copied
records are printed in the to-file record format.

The OUTFMT parameter defaults to *CHAR;
records are printed in character format. If you
specify *HEX, records are printed in both char-
acter and hexadecimal format.

If you specify TOFILE(*PRINT), the OUTFMT
parameter again specifies the format that is used
to print the records (see “Basic Copy Function” on
page 4-5).

In the following example, all records that are not
copied are printed:

CPYF FROMFILE(DKTIN) TOFILE(LIB1/PF) +

MBROPT (*ADD) INCCHAR(*RCD 80 *EQ X) +
PRINT (*EXCLD)

The records are printed in character format.

CCSIDs: When PRINT(*EXCLD) is specified, the
records are printed in the from-file format. All
character data is in the CCSID specified in the
from-file field.

For TOFILE(*PRINT) and PRINT(*COPIED)
listings and when the to-file is a print file, char-
acter data is in the CCSID specified in the to-file
fields.

Creating an Unformatted Print
Listing

If an unformatted print listing is wanted, or if the
from-file records should be formatted using first-
character forms control (CTLCHAR(*FCFC) speci-
fied on the Create Printer File (CRTPRTF),
Change Printer File (CHGPRTF), or Override
Printer File (OVRPRTF) command), a program-
described printer device file name (which can be
QSYSPRT or user-defined) must be specified
instead of *PRINT. For copy commands where
TOFILE(*PRINT) is specified with a PRINT param-
eter value of either *COPIED or *EXCLD (or both),
the QSYSPRT file must be spooled
[SPOOL(*YES)] and must be specified in the
device file or on the OVRPRTF command,
because separate print files are opened for each
file requested. All the records are copied to a
single spooled file, and the data for each member
or label identifier copied begins on a new print

page.

Copying between Different
Database Record Formats
(FMTOPT Parameter)

(CPYF and CPYFRMQRYF commands)

When you copy from a database file to a database
file, you must use the FMTOPT parameter if the
record formats are not identical or if the files are
different types (source or data). If either file is a
device file or inline data file, the FMTOPT param-
eter does not apply. The records are truncated or
padded with blanks or zeros when record lengths
are different. A message is sent if the records are
truncated.

Chapter 4. Copying Files 4-25

For database files, when either
FMTOPT(*CVTSRC) or FMTOPT(*NOCHK) is
specified and the record data copied from any
from-file record is not long enough to fill a to-file
record, the extra bytes in the to-file record are set
to a default value. If a default value other than
*NULL is specified in the DDS (DFT keyword) for
a field, that field is initialized to the specified
default; otherwise, all numeric fields are initialized
to zeros, all character fields are initialized to
blanks, all date, time, and timestamp fields are ini-
tialized to the current system date and time. If
*NULL is specified on the DFT keyword, only the
default buffer value is used. A *NULL default is
ignored.

If the from-file or to-file is a device file or an inline
data file, copy automatically adds or deletes the
source sequence number and date fields for each
record copied.

If one file is a data file and the other a source file,
you must specify FMTOPT(*CVTSRC) to perform
the copy. The sequence number and date fields
are added or deleted as appropriate and the data
part of each record is copied without regard to the
other field definitions in the file record formats.
The SRCSEQ parameter can be used to control
how the sequence numbers are created, provided
SRCOPT(*SEQNBR) is also specified.

For database-to-database copies, you can recon-
cile any differences in record formats by speci-
fying:
* *DROP to drop those fields in the from-file
record format for which there are no fields of
the same name in the to-file record format.

e *MAP to convert fields in the from-file to the
attributes of like-named fields in the to-file and
to fill extra fields in the to-file, that are not in
the from-file, with their default values. The
default values are:

— The parameter value (including *NULL) for
the DFT keyword, if specified for the field

4-26 AS/400 Data Management Guide

— Blanks (for character fields without the
DFT keyword)

— Zeros (for numeric fields without the DFT
keyword)

— Current date, time, or timestamp for those
type fields without the DFT keyword

*MAP is required if fields with the same name are
in different positions in the file record formats,
even though these fields have the same attributes.

e *DROP and *MAP to drop fields in the from-
file not named in the to-file and to convert
remaining fields through mapping rules to fit
the to-file fields that have different attributes or
positions.

* *NOCHK to disregard the differences. Data is
copied left to right directly from one file to the
other. Null values are ignored. The copied
records are either truncated or padded with
default buffer values. Because no checking is
done, fields in the to-file may contain data that
is not valid for the field as defined.

Dropping and mapping fields are based on a com-
parison of field names. Unless all the fields in the
from-file have the same name in the to-file, you
must specify “DROP. If the names are the same,
but the attributes or position in the record is dif-
ferent, you must specify *MAP. Dropped fields
are not copied. There must be at least one like-
named field in both record formats to do mapping.

When *MAP is specified, fields in the to-file record
format that do not exist in the from-file record
format are filled with their default values, as
described earlier in this section. For fields that
have the same name and attributes, the field in
the from-file record format is mapped to the field
with the same name in the to-file record format,
even if their positions in the formats are different.

For example, the field CUSNO is the first field in
the record format ORDHD, but it is the second
field in record format ORDHD1. When the
CUSNO field is copied with *MAP, it is mapped to
the second field of ORDHD1.

Table 4-5 on page 4-27 summarizes the
database-to-database copy operations for each
value on the FMTOPT parameter.

Table 4-5. Database-to-Database Copy Operations

Database File Record Formats

ALL SOME NO
FMTOPT Field Names in Field Names in Field Names
Parameter From-and To-Files From-and To-Files in Either File
Values Are the Same (like-named) Are the Same Are the Same
Attributes and Attributes and Like-named fields have Not all
relative order relative order identical attributes and rela- like-named
also the same not the same tive order (see note 1) fields have
(see note 1) (see note 1) identical
attributes
and relative
order (see
note 1)
*NONE Complete Command Command ends Command Command
copy ends ends ends
*DROP Complete copy Command If there are extra fields in Command Command
(value ignored) ends the from-file, they are ends ends
dropped, all others are
copied.
If there are extra fields in
the to-file, the command
ends.
If there are extra fields in
the from-file and in the
to-file, the command ends.
*MAP (see Complete copy Complete copy If there are extra fields in the from-file, the Command
note 2) (value ignored) (corresponding command ends. ends
tieias a(;e If there are extra fields in the to-file, they
mapped) are filled, and the like-named fields are
mapped.
If there are extra fields in the to-file and the
from-file, the command ends.
*MAP and Complete copy Complete copy Extra fields in the from-file are dropped; Command
*DROP (see | (value ignored) (corresponding like-named fields are mapped; extra fields in ends
note 2) fields are the to-file are filled.
mapped)
*NOCHK Complete copy Complete copy (direct data transfer disregarding fields) (see note 3)
(value ignored)
Notes:

1. Field attributes include the data type (character, zoned, packed, binary or floating point), field length, decimal position (for
numeric fields), date or time format (for date or time fields), null capability, CCSID, and whether the field has variable length

or fixed length.

2. Mapping consists of converting the data in a from-file field to the attributes of the corresponding (like-named) to-file field. If

the attributes of any corresponding fields are such that the data cannot be converted, the copy is ended.

3. The records are padded or truncated as necessary. Data in the from-file may not match the to-file record format.

Chapter 4. Copying Files 4-27

Specifying Data for Different Field
Types and Attributes

Variable-Length Fields: FMTOPT(*MAP) can be
used to map data between fixed- and variable-
length fields and between variable-length fields
with different maximum lengths.

When mapping a variable-length field with a length
of zero to a:

« variable-length to-field, the to-field length is
set to zero.

* fixed-length to-field, the to-field is filled with
single-byte blanks (X'40'), unless the to-field
is a DBCS-only field. A DBCS-only to-field is
set to X'4040's and surrounded by shift-out
and shift-in (SO-SI) characters.

The following applies when the from-field does not
have a length of zero and graphic fields are not
being mapped to or from bracketed DBCS fields.

Mapping Variable-Length Fields to Variable-
Length Fields: The length of a variable-length
from-field is copied to a variable-length to-field
when the from-field data length is less than or
equal to the maximum length of the to-field. If the
from-field data length is greater than the maximum
length of the to-field, the data of the from-field is
truncated to the maximum length of the to-field,
and the to-field length is set to the maximum
length. The data is truncated in a manner that
ensures data integrity.

Note: In the examples, x represents a blank, <
represents the shift-out character, and > repre-
sents the shift-in character. The 2-byte length is
actually a binary number shown as a character to
make the example readable.

4-28 AS/400 Data Management Guide

Variable-Length
Character From-Field Character To-Field
(maximum length of (maximum length
eight) of five)

Variable-Length

ODOXXXXXXXX — mapped —+»00XXXXX
0 XXXX — maopped —»03ABCIXX
O7/ABCDEFGX] — mapped —»05ABCDE

Variable-Length
DBCS-Only From-
Field (maximum
length of eight)

Variable-Length
DBCS-Open To-
Field (maximum
length of five)

04<AASXXXX — mapped-—»04<AASX
08<AABBCC>|—mapped —+05<AA>X

RV2H082-1

Mapping Variable-Length Fields to Fixed-
Length Fields: If the data length of the from-field
is less than or equal to the to-field length, the data
is copied to the fixed-length to-field and padded to
ensure data integrity.

If the length of the from-field data is greater than
the to-field length, the from-field data is copied to
the to-field and truncated on the right in a manner
that ensures data integrity.

Variable-Length

Character From-Field Fixed-Length
(maximum length of Character To-Field
eight) (length of six)

OOXXXXXXXX —mapped —XXXXXX

04ABCDXXXX — mapped —ABCDJXX
O08ABCDEFGH — mapped +»ABCDEF

RV2H083-1

Mapping Fixed-Length Fields to Variable-
Length Fields: |If the to-field has a maximum
length greater than or equal to the from-field
length, the from-field data is copied to the data
portion of the to-field and padded to the right with
single-byte blanks. The to-field length is set to the
length of the from-field length.

Fixed-Length Variable-Length

Character Character To-Field
From-Field (maximum length
(length of six) of nine)

XXXXXX ——— mapped —»06XXXXXXXXX

ABCIXXX —— mapped —»04gABCTXXXXXX
ABCDEF|—— mapped —»04ABCDEFXXX

RV2H084-1

If the length of the from-field is greater than the
maximum length of the variable-length to-field, the
length portion of the variable-length to-field is set
to the maximum length of the variable-length to-
field. The data from the fixed-length from-field is
copied to the data portion of the variable-length
to-field and truncated on the right in a way that
ensures data integrity.

Variable-Length
Character To-Field
(maximum length
of four)

Fixed-Length
Character From-Field
(length of eight)

ABCDEFGH|—— mapped —04ABCD

Variable-Length
DBCS-Only To-Field
(maximum length

Fixed-Length DBCS-
Only From-Field

(length of eight) of four)
<AABBCC> mapped —04<AA>]

RV2H085-1

Date, Time, and Timestamp Fields:
FMTOPT(*MAP) or FMTOPT(*NOCHK) must be
specified on the CPYF command if:

The from-file is a database data file.
The to-file is a physical data file.

The record formats are not identical.

Corresponding date, time, and timestamp fields in
the from-file and to-file must have the same format
attribute and separator for the record formats to
be identical. For the CPYFRMQRYF command,
the same is true except that the open query file
record format is used (rather than a from-file
format).

When using FMTOPT(*NOCHK), record data is
copied directly from left to right into the to-file
without any regard to field types.

When using FMTOPT(*CVTSRC), data portions of
records are directly copied from left to right into
the to-file without any regard to the field types.

When using FMTOPT(*DROP), fields in the from-
file but not in the to-file are dropped. If any like-
named fields in the from-file and to-file are date,
time, or timestamp fields, the corresponding field
must be the same type, have the same format
attribute and separator, and have the same rela-
tive position in the record format as the like-
named field, otherwise FMTOPT(*MAP) may also
be required.

FMTOPT(*MAP) allows copying between like date,
time, and timestamp field types regardless of the
format or separator. Also, copies from and to
date, time, and timestamp fields are allowed from
and to zoned-decimal or character field types, pro-
vided the lengths, formats, and values can be con-
verted. FMTOPT(*MAP) is required in this case
for conversion to the to-field type (format and sep-
arator, if it applies).

Table 4-6 on page 4-30 outlines the conversion
possibilities for the date, time, and timestamp.

Chapter 4. Copying Files 4-29

Table 4-6. Conversion Table

Allow-

able

Field Direc- Data Allowable
Data types Forms Length tion Type Formats Field Length

6, 8, or
Date Any date format 10 <--> Date Any 6, 8, or 10
Zoned (MMDDYY) 6,0 <--> Date Any 6, 8, or 10
Zoned (DDMMYY) 6,0 <> Date Any 6, 8, or 10
Zoned (YYMMDD) 6,0 <--> Date Any 6, 8, or 10
Zoned (YYDDD) 5,0 <--> Date Any 6, 8, 0or 10
Character (MMdDDdYY) 6 min <> Date Any 6, 8, or 10
Character (DDAMMAYY) 6 min <> Date Any 6, 8, 0or 10
Character (YYdMMdDD) 6 min <> Date Any 6, 8, or 10
Character (YYdDDD) 6 min <--> Date Any 6, 8, or 10
Character (*USA) 6 min —-—-> Date Any 6, 8, or 10
Character (*1S0O) 6 min > Date Any 6, 8, or 10
Character (*EUR) 6 min - Date Any 6, 8, or 10
Character (*JIS) 6 min —-—-> Date Any 6, 8, or 10
Character (YYYYDDD) 6 min - Date Any 6, 8, or 10
Time Any time format 8 <--> Time Any 8
Zoned (HHMMSS) 6,0 <--> Time Any 8
Character (HHtMMLSS) 4 min - Time Any 8
Character (*USA) 4 min - Time Any 8
Character (*1S0) 4 min - Time Any 8
Character (*EUR) 4 min ——-> Time Any 8
Character (*JIS) 4 min > Time Any 8
Character (HHtMMtSS) 8 min <---- Time Any 8
Timestamp SAA format 26 <--> Timestamp SAA 26
Zoned (YYYYMMDDHHMMSS) 14,0 <--> Timestamp SAA 26
Character SAA format 14 min > Timestamp SAA 26
Character (YYYYMMDDHHMMSS) 14 min <--> Timestamp SAA 26

Note: In the format columns,

d = date separator value

t = time separator value

any = job formats or SAA formats

In the allowable field-length column, min means the specified length is the minimum required for a conversion
attempt. Conversion errors may still occur if the length is not long enough for the desired or assumed format.
Refer to the DDS Reference for more information on the date, time, and timestamp data types and keywords.

4-30 AS/400 Data Management Guide

When converting a character field to a date,
time, or timestamp field; FMTOPT(*MAP) is
specified; and the corresponding from- and to-field
names match; an attempt is made to determine
what similar date form the character field is in.
The following applies:

* For converting a character field to a date
field, the minimum length required for the
character field is 6. The system first deter-
mines if the character field data is in the same
format and has the same separator as speci-
fied in the current job under which the copy
command is running. This may be *MDY,
*DMY, *YMD, or *JUL for the format and slash
(/), hyphen (-), period (.), comma (,), or blank (
) for the separator. If the character field is not
in the current job specified format and sepa-
rator form, it determines if it is in one of the
SAA formats (*ISO, *USA, *EUR, or *JIS), or if
it is in a YYYYDDD form (no separator). If the
system determines the character field is in
one of the these forms, it converts it to the
date to-field. The date portion of the char-
acter field must be left justified and can
contain trailing blanks.

» For converting a character field to a time
field, the minimum length required for the
character field is 4. The system first deter-
mines if the character field data is in the same
format and has the same separator as speci-
fied in the current job under which the copy
command is running. This may be *HMS for
the format and colon (:), comma (,), period (.),
or blank () for the separator. If the character
field is not in the current job specified format
and separator form, the system determines if
it is in one of the SAA formats (*ISO, *USA,
*EUR, or *JIS). If the system determines the
character field is in one of these forms, it con-
verts it to the time to-field. The time portion of
the character field must be left justified and
can contain trailing blanks.

» For converting a character field to a
timestamp field, the minimum length required
for the character field is 14. The system first
determines if the character field data is in one
of the following:

— SAA format
— YYYYMMDDHHMMSS form

If the system determines the character field is
in one of these forms, it converts it to the

timestamp to-field. The timestamp portion of
the character field must be left justified and
can contain trailing blanks.

When converting a date, time, or timestamp
field to a character field; FMTOPT(*MAP) is
specified; and the corresponding from and to-file
field names match; the system attempts to convert
the date, time, or timestamp field into the form
specified by the current job. The following
applies:

* For converting a date field to a character
field, the minimum length required for the
character field is 6. The system first deter-
mines the date format and separator attribute
of the current job under which the copy
command is running. This may be *MDY,
*DMY, *YMD, or *JUL for the format and slash
(/), hyphen (-), period (.), comma (,), or blank (
) for the separator. The date field is con-
verted into the character field in the specified
format of the current job. For character fields
that are longer than required for the conver-
sion, the data is left justified and trailing
blanks are added.

« For converting a time field to a character
field, the minimum length required for the
character field is 8. The system first deter-
mines the time separator attribute of the
current job under which the copy command is
running. This may be colon (:), comma (,),
period (.), or blank (). The time field is con-
verted into the character field in the *HMS
format (including the specified separator of the
current job). For character fields that are
longer than required for the conversion, the
data is left justified and trailing blanks are
added.

» For converting a timestamp field to a char-
acter field, the minimum length required for
the character field is 14. The timestamp field
is converted into the character field in the
YYYYMMDDHHMMSS form (no separators).
For character fields that are longer than
required for the conversion, the data is left
justified and trailing blanks are added.

When converting a zoned decimal field to a
date, time, or timestamp field, FMTOPT(*"MAP)
is specified and the corresponding from- and to-
field names match, the system assumes the

Chapter 4. Copying Files 4-31

zoned decimal field is in the form specified by the
current job. The following applies:

* For converting a zoned decimal field to a
date field, the system assumes the zoned
decimal field data is in the same date format
(no separators) as specified in the current job
under which the copy command is running.
This may be *MDY, *DMY, *YMD, or *JUL.
The length of the zoned decimal field must be
5,0 (if the current job format is *JUL) or 6,0 (if
the current job format is *MDY, *DMY, or
*YMD). The system attempts to convert or
copy it to the date to-field.

* For converting a zoned decimal field to a
time field, the system assumes the zoned
decimal field data is in the *HMS format (no
separators). The length of the zoned decimal
field must be 6,0. The system attempts to
convert or copy it to the time to-field.

* For converting a zoned decimal field to a
timestamp field, the system assumes the
zoned decimal field data is in the
YYYYMMDDHHMMSS form (no separators).
The length of the zoned decimal field must be
14,0. The system attempts to convert or copy
it to the timestamp to-field.

When converting a date, time, or timestamp
field to a zoned decimal field, FMTOPT(*MAP)
is specified and the corresponding from- and to-
field names match, the system uses the current
job specified form to determine what format the
zoned decimal data should be in. The following
applies:

* For converting a date field to a zoned
decimal field, the system assumes the zoned
decimal field data is to be in the same date
format (no separators) as specified in the
current job under which the copy command is
running. This may be *MDY, *DMY, *YMD, or
*JUL. The length of the zoned decimal field
must be 5,0 (if the current job format is *JUL)
or 6,0 (if the current job format is *MDY,
*DMY, or *YMD). The system attempts to
convert or copy the date field to it.

* For converting a time field to a zoned
decimal field, the system assumes the zoned
decimal field data is to be in the *HMS format
(no separators). The length of the zoned
decimal field must be 6,0. The system
attempts to convert or copy the time field to it.

4-32 AS/400 Data Management Guide

* For converting a timestamp field to a
zoned decimal field, the system assumes the
zoned decimal field data is to be in the
YYYYMMDDHHMMSS form (no separators).
The length of the zoned decimal field must be
14,0. The system attempts to convert or copy
the timestamp field to it.

Any conversion not successful because of a data
value, data format, or data-length error causes an
information message to be sent. The to-file field

is set with its default value.

Null-Capable Fields: FMTOPT(*MAP) or
FMTOPT(*NOCHK) must be specified on the
CPYF command if:

The from-file is a database data file.
The to-file is a physical data file.
The record formats are not identical.

For the record formats to be identical, corre-
sponding fields in the from-file and to-file must
both be null-capable or not null-capable. For the
CPYFRMQRYF command, the same is true
except that the open query file record format is
used (rather than a from-file format).

When you use FMTOPT(*MAP):

* Null values are copied from null-capable from-
file fields to null-capable to-file fields that are
named alike. This copying can only happen if
the field attributes and lengths are compatible.

* Fields that are not null-capable can also be
copied from and to null-capable fields, pro-
vided the field attributes and lengths are com-
patible. The results to expect in the to-file
field are:

— Copying a null-capable field to a null-
capable field

Null values in the from-file field are copied
to the to-file field. Values that are not null
in the from-file field are also copied to the
to-file field. For values that are not null in
the from-file field that cause conversion
errors during the copy, the default value of
the to-file field is placed into the to-file
field.

— Copying a field that is not null capable to
a null-capable field

Values that are not null in the from-file
field are copied to the to-file field. For

values in the from-file field that cause con-
version errors during the copy operation,
the default value of the to-file field is
placed into the to-file field.

— Copying a null-capable field to a field that
is not null capable

Values that are not null in the from-file
field are copied to the to-file field. If a con-
version error occurs when copying values
that are not null or the from-file field value
is null, the to-file field default value is
placed into the to-file.

When you use FMTOPT(*NONE), the null values
in the from-file are copied to the to-file when
copying a database file to a physical data file with
identical record formats.

When you use FMTOPT(*DROP), the null values
are copied.

When you use FMTOPT(*NOCHK) or
FMTOPT(*CVTSRC), the record data is copied
directly from left to right into the to-file without any
regard to field types. Null values are not copied if
*NOCHK or *CVTSRC is specified, because the
record formats need not be identical. Either a
user-specified or default value is copied to the
to-file rather than a null value.

CCSIDs: When FMTOPT(*NOCHK) is specified,
no CCSID conversions are done. Record data is
copied directly from left to right into the to-file
without any regard to field types or CCSIDs.

When FMTOPT(*MAP) is specified and a valid
conversion is defined between the CCSID of the
from-field and the CCSID of the to-file field, the
character data is converted to the CCSID of the
to-file field. However, if the CCSID of the from-file
field or the CCSID of the to-file field is 65535, no
conversions are done.

When FMTOPT(*NONE) is specified, the from-file
and to-file attributes must be the same, unless
one of the CCSIDs in corresponding fields is
65535.

For the CPYFRMQRYF command, the FMTOPT
rules are the same except that the changed query
format is used instead of a from-file format. See

“CPYFRMQRYF Command Support for CCSIDs”
on page 4-9 for information on the modified query
format.

DBCS-Graphic Fields: When mapping graphic
fields to bracketed DBCS fields, shift-out and
shift-in characters are added around the DBCS
data. When mapping from bracketed-DBCS fields
to graphic fields, the shift-out and shift-in charac-
ters are removed. For variable-length fields, the
graphic field length is expressed in the number of
DBCS characters and the bracketed DBCS length
is expressed in number of bytes (including the
shift-out and shift-in characters). This difference is
accounted for when mapping variable-length
graphic fields to or from variable bracketed DBCS
fields.

When using the CPYF command with
FMTOPT(*MAP) to copy a DBCS-open field to a
graphic field, a conversion error occurs if the
DBCS-open field contains any SBCS data
(including blanks). When copying to a graphic
field, it may be desirable to ignore trailing SBCS
blanks that follow valid DBCS data (in a
DBCS-open field). This allows the copy operation
to be done without a conversion error. This type
of copy may be done using a combination of the
OPNQRYF and CPYFRMQRYF commands. The
OPNQRYF command is used to remove trailing
single-byte blanks and place the data into a
variable-length DBCS-open field. The
CPYFRMQRYF command with FMTOPT(*MAP)
specified is used to copy the variable-length
DBCS-open field to the graphic field.

For example, assume the DBCS-open fields in the
file named FILEO are copied into graphic fields in
the file named FILEG. An additional file (FILEV)
must be created.

The DDS for the original from-file FILEO:

Beginning of data
R FMTO1
FLD1 100
FLD2 70
FLD3 20A

0001.00
0002.00
0003.00
0004.00

CCSID(65535)
CCSID(65535)

> > >

End of data

DDS for FILEV: This file's format will be specified
on the OPNQRYF command FORMAT parameter.
The only difference from FILEO is that the
DBCS-open fields to be converted to graphic fields
are defined to be variable length.

Chapter 4. Copying Files 4-33

Beginning of data

0001.00 A R FMTO1
0002.00 A FLD1 100 VARLEN CCSID(65535)
0003.00 A FLD2 70 VARLEN CCSID(65535)
0004.00 A FLD3 20A

End of data

DDS for the new file FILEG: The graphic fields
are defined as fixed length; however, they could
be made variable length, if desired.

Beginning of data

0001.00 A R FMTO1
0002.00 A FLD1 4G CCSID(65535)
0003.00 A FLD2 3G CCSID(65535)
0004.00 A FLD3 20A

End of data

The following commands are used to copy the
data from the DBCS-open fields in FILEO to the
graphic fields in FILEG:

CHGJOB CCSID(65535)
OPNQRYF FILE((MYLIB/FILEO))
FORMAT (MYLIB/FILEV *ONLY)
MAPFLD ((FLD1 '%STRIP(1/FLD1 *TRAIL)')
(FLD2 '%STRIP(1/FLD2 *TRAIL)'))

CPYFRMQRYF FROMOPNID(FILEO) TOFILE(MYLIB/FILEG)
MBROPT (*REPLACE) FMTOPT (*MAP)

For more information on coping DBCS fields, see
n

s
e}
2
3
m
D
0\-
>
3
3
)
w
«

Conversion Rules

Table 4-7 on page 4-35 shows the field conver-
sions that are allowed between mapped fields in
the from-file and to-file record formats. If fields
with the same name have incompatible attributes
between the from-file and to-file formats, only
FMTOPT(*NOCHK) can be used to perform the
copy. An X indicates that the conversion is valid,
and a blank indicates a field mapping that is not
valid.

4-34 AS/400 Data Management Guide

When mapping character fields, the field being
copied is truncated on the right if it is longer than
the field into which the copy is made. For
example, a character field of length 10 is copied
into a character field of length 6; ABCDEFGHIJ
becomes ABCDEF. If the field being copied is
shorter than the field into which it is copied, the
field is padded on the right with blanks. For
example, a character field of length 10 is copied
into a character field of length 12; ABCDEFGHIJ
becomes ABCDEFGHIJxx (x = blank).

When mapping numeric fields and the field being
copied is longer than the field into which the copy
is made, the field being copied is truncated on the
left and right of the decimal point. For example, a
zoned decimal field of length 9 with 4 decimal
positions is copied to a zoned decimal field of
length 6 with 3 decimal positions; 00115.1109
becomes 115.110.

If significant digits must be truncated to the left of
the decimal point, the value is not copied, and the
field is set to its default value (either the param-
eter value of the DFT keyword, if specified, or
zero, if the DFT keyword is not specified). Also, if

| + h flantin nt
ony:uficaﬂce will be lost because a noaing- }JUIIII.

numeric value exponent is too large, the to-file
field is set to its default value.

When mapping numeric fields and the field being
copied is shorter than the field into which the copy
is made, the field being copied is padded with
zeros on the left and right of the decimal point.
For example, a packed decimal field of length 7
with 5 decimal positions is copied to a packed
decimal field of length 10 with 6 decimal positions;
99.99998 becomes 0099.999980.

Table 4-7. Field Conversions

To To
Character To To Binary (No To To Binary
or Packed Zoned Decimals Floating Field (with
Hexadecimal Decimal Decimal Positions) Point Decimals
From Field Field Field Field Field Field Positions)
Character or Hexadecimal X
Packed X X X X
Zoned X X X X
Binary (no decimal X X X X
positions)
Floating Point X X X X
Binary (with decimal X1

positions)

1 A binary numeric field with one or more decimal positions can be copied only to a binary field with the same

number of decimal positions.

Adding or Changing Source File
Sequence Number and Date
Fields (SRCOPT and SRCSEQ
Parameters)

(CPYF and CPYSRCF commands)

Copying Device Source Files to
Database Source Files

When you copy from a device source file to a
database source file, the system adds sequence
number and date fields at the start of the records.
The first record is assigned a sequence number of
1.00, the next 2.00, and so on, increasing in incre-
ments of 1.00. If more than 9999 records are
copied, the sequence number is wrapped back to
1.00 and continues to be incremented unless the
SRCOPT and SRCSEQ parameters are specified
on the copy command. Date fields are initialized
to zeroes. If several copies to the same file are
made with MBROPT(*ADD) specified, you will
have duplicate sequence numbers in the file. This
can be corrected using the Reorganize Physical
File Member (RGZPFM) command.

When copying to or from a device, it is more effi-
cient to use a device data file than a device
source file. The copy function automatically adds
or removes the source sequence number and date
fields as necessary.

Copying Database Source Files
to Device Source Files

When you are copying to a device source file, the
system removes the date and sequence number
fields from the start of the records.

When copying to or from a device, it is more effi-
cient to use a device data file than a device
source file. The copy function automatically adds
or removes the source sequence number and date
fields as necessary.

Copying Database Source Files
to Database Source Files

You can copy between database source files by
using the CPYSRCF or CPYF command. The
CPYSRCF command may be easier to use
because the parameter defaults are particularly
suited for copying database source files.

Note: When TOFILE(*PRINT) is specified, the
CPYSRCF command uses a format to show
source information that is easy to read. Also, for
multiple member copies, the members are listed
(and copied) in alphabetical order. When you
copy from a database source file to a database
source file the sequence number and date fields
are not changed unless the SRCOPT parameter is
specified. If SRCOPT(*SEQNBR) is specified, the
sequence numbers are updated. If
SRCOPT(*DATE) is specified, the date field is ini-

Chapter 4. Copying Files 4-35

tialized to 0. Both *SEQNBR and *DATE can be
specified.

If SRCOPT(*SEQNBR) is specified in order to
update the sequence numbers, the SRCSEQ
parameter is taken into consideration. The
SRCSEQ parameter specifies the starting value
assigned to the first record copied and the incre-
ment value. The defaults are 1.00 and 1.00. A
whole number of no more than 4 digits and/or a
fraction of no more than 2 digits can be specified
for the starting value and the increment value.
You must use a decimal point for fractions. If you
specify SRCSEQ(100.50), then the records copied
will have sequence numbers 100.00, 100.50,
101.00, 101.50, and so on.

If the file to be copied contains more than 9999
records, a fractional increment value should be
used so that each record has a unique sequence
number. If a starting value of .01 and an incre-
ment value of .01 are specified, the maximum
number of records copied with unique sequence
numbers is 999 999. When the maximum
sequence number is exceeded (9999.99), all
remaining records on that copy are initialized to
9999.99. The system does not wrap back to 1.00.

If the database source file being copied to has
only an arrival sequence access path, then
because the file does not have a keyed sequence
access path (arranged by sequence number),
records cannot be inserted in the middle of the file
keyed access path. The records are always phys-
ically placed at the end of the file.

Recoverable Error
Considerations (ERRLVL
Parameter)

(CPYF and CPYFRMQRYF commands)

When you are copying to or from a database file
or from a tape file, you can limit the number of
recoverable errors that you accept before the copy
is ended. Use the ERRLVL parameter to specify
this limit. The types of errors this parameter
applies to are:

CPF4826
CPF5026

Media error

Duplicate key in the access path of
this member

4-36 AS/400 Data Management Guide

CPF5029 Data or key conversion error

CPF5030 Partial damage on member

CPF5034 Duplicate key in the access path of
another member

CPF5036 Invalid length tape block read

CPF5097 *NAN (Not a Number) value not

allowed in floating-point key field

The ERRLVL parameter specifies the maximum
number of recoverable errors allowed for each
member or label pair copied. Note that the value
specified for ERRLVL indicates the total errors
allowed on both the from-file and the to-file com-
bined for each member or label pair copied. Each
time an error occurs, (1) the count for that
member or label pair is increased by 1, (2) a
message identifying the last good record read or
written is printed on all copy lists if
TOFILE(*PRINT), PRINT(*COPIED), or
PRINT(*EXCLD) was specified, and (3) copying
continues. If the from-file member is completely
copied without exceeding the limit, the counter is
reset to 0, and the copy of the next member is
started. If the limit is exceeded during the copy of
a member, copying ends and a message is sent,
even if there are more records or additional
members to be copied.

For a database from-file, including the open query
file, the recoverable errors are those that occur
when data is converted (mapped) and those
caused by a damaged area on the disk (in auxil-
iary storage). For a tape from-file, the recoverable
errors are (1) a block length that is not valid and
(2) a media-read operation from the tape volume
on the device resulting in an error. For a physical
to-file, the recoverable errors are those that occur
when data is converted and those that occur when
more than one of the same key is found. Any
record that causes an error is not copied to the
to-file, but for a write error the record is printed on
a PRINT(*COPIED) and PRINT(*EXCLD) printout,
followed by a message in the printout indicating
that the record was not actually copied. For a
read error, no record is available to be printed on
the copy printouts (TOFILE(*PRINT),
PRINT(*COPIED), or PRINT(*EXCLD)), but a
message is printed on all printouts specified indi-
cating that a record could not be read.

Partial object damage to the contents of a data-
base file is an error that occurs when a portion of

the file cannot be read from disk. If a file is
damaged in such a way, you can bypass records
in error by copying the good records and manually
adding the records that were not copied because
of the damage.

Regardless of the value of the ERRLVL param-
eter, recoverable errors will always appear in the
job log with a reply of “C” for “Cancel.”

Date, Time, and Timestamp
Considerations

For FMTOPT(*MAP), FROMKEY with *BLDKEY,
TOKEY with *BLDKEY, and INCREL parameters,
2-digit year-date fields or values will be assumed
to have a century of 19 if the year is in the range
from 40 to 99, or a century of 20 if the year is in
the range from 00 to 39. For example, 12/31/91 is
considered December 31, 1991, while 12/31/38 is
considered December 31, 2038.

However, any from-files containing 2-digit year-
date fields with actual internal date values outside
the range January 1, 1940 to December 31, 2039
cause input mapping errors, and the copy opera-
tion fails.

When FMTOPT(*MAP) is used to convert or copy
a from-file field date value in a 4-digit year form to
a 2-digit year form, the from-file field value must
be within the range of January 1, 1940 to
December 31, 2039. Otherwise, a mapping error
occurs and the to-file field is set with its default
value. Likewise, when using a 4-digit year date as
a record selection input string on FROMKEY with
*BLDKEY or TOKEY with *BLDKEY, the value
must be within the same range if the corre-
sponding from-file field is a date field with a 2-digit
year-date. Otherwise, an error occurs. INCREL
record selection is the exception to this rule, as
4-digit year date values outside this range may be
used (and will be treated as such) for corre-
sponding 2-digit year-date fields.

When mapping a character field to a date, time, or
timestamp field and an SAA format form is being
used in the character field, leading zeros may be
omitted from month, day, and hour parts, and
microseconds may be truncated or omitted entirely
in the character field. For mapping to time fields,
the seconds part (and corresponding separator)
may be omitted from the character field (also if it

is in an SAA form). For SAA *USA form values,
the AM or PM with a preceding blank is required.
These rules are also true for date, time, or
timestamp values entered when using FROMKEY
with *BLDKEY, TOKEY with *BLDKEY, or INCREL
parameters on the CPYF command, which also
accept shortened SAA forms. All other instances
of date, time, and timestamp data require leading
zeros when necessary and no truncation.

For both forms of the TOKEY parameter
(*BLDKEY or non-*BLDKEY) the from-field data
must be in a particular format for a chronological
comparison to be made. For the date field, the
format must be SAA *ISO or SAA *JIS for a
chronological comparison to be made. For the
time fields, the format must be *HMS, SAA *ISO,
SAA *EUR, or SAA *JIS for the chronological
comparison to be made. For the timestamp fields,
the SAA format allows the chronological compar-
ison. For any other formats of date or time fields
(for date (*MDY, *DMY, *YMD, *JUL, SAA *EUR,
or SAA *USA) or for time (SAA *USA)), chronolog-
ical comparisons are not possible because the
TOKEY parameter performs a straight character
string comparison. When chronological compar-
isons cannot be made, an informational message
is sent and the copy operation continues.

When copying data into a file with date, time, or
timestamp fields, and the from-file is a device file
or FMTOPT(*NOCHK) or FMTOPT(*CVTSRC) has
been specified, output mapping errors may occur
if the data copied to a date, time, or timestamp
field is not valid data for the to-file field format and
separator attributes. The record is not copied if
this occurs. If the CPYF or CPYFRMQRYF
command is being used, an error level other than
zero (ERRLVL parameter) may be specified to
bypass the record and continue the copy opera-
tion. When copying into date, time, or timestamp
fields in these instances, it is important that the
from-file data is valid for the to-file.

Position Error Considerations

A position error occurs when the copy file function
cannot locate the first record to be copied in the
from-file member. This can happen when using
the CPYF, CPYSRCF, CPYTODKT, or
CPYTOTAP commands. If any of the following
are true, you may receive a position error for the
from-file member:

Chapter 4. Copying Files 4-37

* The FROMKEY parameter is specified and all
records in the member are less than the
FROMKEY value or the member is empty.

* The FROMRCD parameter is specified
beyond the end of the member or the member
is empty.

* The value of the from-file member position
(the POSITION parameter of the OVRDBF
command) is beyond the end of the member,
is not valid for the access path of the from-file,
or the member is empty.

If a member position error occurs, the member
may not be added to the to-file, and no informa-
tion about the member will be added to the print
lists.

If a member position error occurs during a copy
operation involving multiple members, the copy
operation will continue with the next member.

If a member position error occurs for all members
being copied, a print list will not be produced and
the to-file may not be created.

Allocation Considerations

When a database file is copied, each from-file
member is allocated with a shared-for-read
(*SHRRD) lock state. The member is only allo-
cated while it is being copied. When a device file
is copied, it is allocated with a shared-for-read
(*SHRRD) lock state. Generally, the member
being copied to is allocated with a shared-for-
update (*SHRUPD) lock state. However, if
MBROPT(*REPLACE) is specified, the member
being copied to is allocated with an exclusive
(*EXCL) lock state, and the records in the file
being copied to are removed. A shared-for-read
lock state lets other users read and update the file
while it is being copied.

When you are copying one physical file to
another, stronger locks ‘may be placed on the
members to allow internal system functions to
perform the copy.

* The from-file member can be allocated with an
exclusive-allow-read (*EXCLDRD) lock state.

4-38 AS/400 Data Management Guide

¢ The to-file member can be allocated with an
exclusive (*EXCL) lock state.

These stronger locks are required when
COMPRESS(*NO) is specified. If you cannot get
them, the copy operation may be performed with
COMPRESS(*YES) specified instead.

If a member is allocated by another job with too
strong a lock state, or if the library containing the
file is renamed during the copy operation, the
copy operation may end with an error message.

During the time a copy command request is run,
the file named on the TOFILE parameter may be
locked (similar to an *EXCL lock with no time-out)
so that no access is possible. Any attempt to use
a function that must touch the TOFILE object
locks up a work station until the copy command is
done running. Following are examples of func-
tions that should not be used on a file being
copied into by a copy command:

WRKACTJOB
Option 11 (Work with Locks)
Option 5 (Work with Job Member Locks)
Option 8 (Work with Object Locks)
DSPDBR
DSPFD
DSPFFD
WRKJOB
Option 12 (Work with Locks, if active)
Option 5 (Work with Job Member Locks)
F10 (Display Open Files, if active)
WRKLIB
The library containing the to-file
DSPLIB
The library containing the to-file
WRKOBJLCK
WRKRCDLCK

If you want to display any information about a file
into which data is being copied by a copy
command, you must anticipate the requirement
and force the copy command to use block record-
at-a-time operations by specifying ERRLVL(1).

If you anticipate that problems may arise because
of this, you can preallocate the files and members
using the Allocate Object (ALCOBJ) command.
(See the CL Programmer’s Guide for information
about preallocating objects.)

Authority

The following table summarizes the authority
required for the from-file and the to-file to perform
a copy operation.

Table 4-8. Authority Required to Perform Copy Opera-
tion

From-File To-File
DDM file *OBJOPR *OBJOPR!1
*READ *ADD
Device file2 *OBJOPR *OBJOPR
*READ *READ
Logical file *OBJOPRS Not allowed
Physical file *OBJOPR *OBJOPR!
*READ *ADD

1 This is the authority required for MBROPT(*ADD).
If MBROPT(*REPLACE) is specified, *OBJMGT
and *DLT authority are also required.

2 *OBJOPR and *READ authority is also required for
any devices used for the file.

3 Also requires *READ authority to the based-on
physical file members for the logical file members
copied.

If the to-file does not exist and CRTFILE(*YES) is

specified so that the copy command will create the
to-file, then you must have operational authority to
the CRTPF command.

Performance
The performance of the copy operation depends
on the types of files copied, the file attributes, and

the optional copy parameters specified.

A copy that requires maintenance of a keyed

sequence access path is slower than a copy from
or to an arrival sequence access path. Copy per-
formance will be improved if the from-file is reor-
ganized so that its arrival sequence is the same
as its keyed sequence access path, or if records
are selected using the FROMRCD or TORCD
parameter, so that the keyed sequence access
path is not used.

The fewer logical access paths there are over the
to-file, the faster the copy will be, because those
access paths have to be updated as the records
are copied.

The smaller the record lengths of the file, the
faster the copy.

In general, the fewer optional copy parameters
specified, the faster the copy. The following
parameters affect the performance of the copy
operation:

INCCHAR
INCREL
ERRLVL
FMTOPT
SRCOPT
PRINT

Using the COMPRESS function does not signif-
icantly affect performance. You should request
COMPRESS(*NO) if you want deleted records in
the to-file, for example, when the relative record
numbers need to be identical.

Chapter 4. Copying Files 4-39

4-40 AS/400 Data Management Guide

Chapter 5. Spool Support

Spooling functions help system users to manage
input and output operations more efficiently. The
system supports two types of spooling:

* Qutput spooling sends job output to disk
storage, rather than directly to a printer or
diskette output device. Output spooling allows
the job producing the output to continue pro-
cessing independently of the speed or avail-
ability of output devices.

* Input spooling accepts job input, stores the
input data in disk storage to await processing,
and allows the input device to be used inde-
pendently of when the job is actually pro-
cessed.

Output spooling may be used for both printer and
diskette devices; input spooling applies to diskette
and database file input.

This chapter discusses both output and input
spooling, including advanced output spooling
support, such as using multiple output queues and
redirecting files. For more information about
spooling support for printer and diskette devices,
see the Guide to Programming for Printing and the
Guide to Programming for Tape and Diskette,
respectively.

Output Spooling Overview

Output spooling allows the system to produce
output on multiple output devices, such as printer
and diskette devices, in an efficient manner. It
does this by sending the output of a job destined
for a printer or diskette to disk storage. This
process breaks a potential job limitation imposed
by the availability or speed of the output devices.

Spooling is especially important in a multiple-user
environment where the number of jobs running
often exceeds the number of available output
devices. Using output spooling, the output can be
easily redirected from one device to another.

The main elements of output spooling are:

Device description
A description of the printer or diskette
device

© Copyright IBM Corp. 1991, 1993

Spooled file
A file containing spooled output records
that are to be processed on an output
device

Output queue
An ordered list of spooled files

Writer
A program that sends files from an output
queue to a device

Application program
A high-level language program that
creates a spooled file using a device file
with the spooling attribute specified as
SPOOL(*YES)

Device file
A description of the format of the output,
and a list of attributes that describe how
the system should process the spooled file

Figure 5-1 shows the relationship of these
spooling elements.

Program

Deyioe Writer
File

l |

Device

Spooled (Printer Device
File or Description

Diskette)

Spooled
File

Spooled
File Output

RSLH164-1

Figure 5-1. Relationship of Output Spooling Elements

5-1

Output spooling functions are performed by the
system without requiring any special operations by
the program that produces the output. When a
device file is opened by a program, the operating
system determines whether the output is to be
spooled. When a printer or diskette device file
specifying spooling is opened, the spooled file
containing the output of the program is placed on
the appropriate output queue in the system.

A spooled file can be made available for printing
when the printer file is opened, when the printer
file is closed, or at the end of the job. A printer
writer is started in the spooling subsystem to send
the records to the printer. The spooled file is
selected from an output queue. The same
general description applies for spooled diskette
files.

Device Descriptions

Device descriptions must be created for each
printer and diskette device to define that device to
the system. Printer device descriptions are
created using the Create Device Description for
Printer (CRTDEVPRT) command; diskette device
descriptions are created using the Create Device
Description for Diskette (CRTDEVDKT) command.
See the Device Configuration Guide for more
information about specifying device descriptions.

Summary of Spooled File
Commands

The following commands may be used to work
with spooled files. For detailed descriptions of the
commands, see the CL Reference.

CHGSPLFA
Change Spooled File Attributes: Allows you to
change some attributes of a spooled file, such
as the output queue name or the number of
copies requested, while the spooled file is on
an output queue.

CPYSPLF
Copy Spooled File: Copies a spooled file to a
specified database file. The database file may
then be used for other applications, such as
those using microfiche or data communica-
tions.

DLTSPLF
Delete Spooled File: Deletes a spooled file
from an output queue.

5-2 AS/400 Data Management Guide

DSPSPLF
Display Spooled File: Allows you to display
data records of a spooled file.

HLDSPLF
Hold Spooled File: Stops the processing of a
spooled file by a spooling writer. The next
spooled file in line will be processed.

RLSSPLF
Release Spooled File: Releases a previously
held spooled file for processing by a spooling
writer.

SNDNETSPLF
Send Network Spooled File: Sends a spooled
file to another system user on the Systems
Network Architecture distribution services
(SNADS) network.

WRKSPLF
Work with Spooled Files: Allows you to display
or print a list of spooled files on the system.

WRKSPLFA
Work with Spooled File Attributes: Shows the
current attributes of a spooled file.

Locating Your Spooled Files

The Work with Spooled Files (WRKSPLF)
command can be used to display or print all the
spooled files that you have created. This is the
easiest way to find your spooled files if you do not
know the name of the output queue where they
have been placed. To find all spooled files \
created by your current job, use the Work with Job
(WRKJOB) command and choose Option 4 to
work with the spooled files.

File Redirection

File redirection occurs when a spooled file is sent
to an output device other than the one for which it
was originally intended. File redirection may
involve devices that process different media (such
as printer output sent to a diskette device) or
devices that process the same type of media but
are of different device types (such as 5219 Printer
output sent to a 4224 Printer).

Depending on the new output device for the
spooled file, the file may be processed just as it
would have been on the originally specified
device. However, differences in devices often

cause the output to be formatted differently. In
these cases, the system sends an inquiry
message to the writer's message queue to inform
you of the situation and allow you to specify
whether you want printing to continue. For more
information about print file redirection, see the
Guide to Programming for Printing.

Output Queues

Batch and interactive job processing may result in
spooled output records that are to be processed
on an output device, such as a printer or diskette
drive. These output records are stored in spooled
files until they can be processed. There may be
many spooled files for a single job.

When a spooled file is created, the file is placed
on an output queue. Each output queue contains
an ordered list of spooled files. A job can have
spooled files on one or more output queues. All
spooled files on a particular output queue should
have a common set of output attributes, such as
device, form type, and lines per inch. Using
common attributes on an output queue reduces
the amount of intervention required and increases
the device throughput.

The following lists the parameters on the Create
Output Queue (CRTOUTQ) command and what
they specify:

o DSPDTA: Whether users without any special
authority but who do have *USE authority to
the output queue can display, copy, or send
the contents of spooled files other than their
own. By specifying *OWNER for DSPDTA,
only the owner of the file or user with
*SPLCTL can display, copy, or send a file.

e JOBSEP: How many, if any, job separator
pages are to be printed between the output of
each job when the output is printed.

e DTAQ: The data queue associated with this
output queue. If specified, an entry is sent to
the data queue whenever a spooled file goes
to Ready Status on the queue.

e OPRCTL: Whether a user having job control
authority can control the output queue (for
example, if the user can hold the output
queue).

¢ SEQ: Controls the order in which spooled
files will be sorted on the output queue. See
“Order of Spooled Files on an Output Queue”
on page 5-4 for more information.

e AUTCHK: Specifies what type of authority to
the output queue will enable a user to control
the spooled files on the output queue (for
example, enable the user to hold the spooled
files on the output queue).

e AUT: Public authority. Specifies what control
users have over the output queue itself.

o TEXT: Text description. Up to 50 characters
of text that describes the output queue.

Summary of Output Queue
Commands

The following commands may be used to create
and control output queues. For detailed
descriptions of the commands, see the CL
Reference manual.

CHGOUTQ
Change Output Queue: Allows you to change
certain attributes of an output queue, such as
the sequence of the spooled files on the output
queue.

CLROUTQ
Clear Output Queue: Removes all spooled
files from an output queue.

CRTOUTQ
Create Output Queue: Allows you to create a
new output queue.

DLTOUTQ
Delete Output Queue: Deletes an output
qgueue from the system.

HLDOUTQ
Hold Output Queue: Prevents all spooled files
on a particular output queue from being pro-
cessed by a spooling writer.

RLSOUTQ
Release Output Queue: Releases a previously
held output queue for processing by a spooling
writer.

WRKOUTQ
Work with Output Queue: Shows the overall
status of all output queues, or the detailed
status of a specific output queue and its
spooled files.

Chapter 5. Spool Support 5-3

WRKOUTQD
Work with Output Queue Description: Shows
descriptive information for an output queue.

Default Printer Output Queues

When a printer is configured to the system, the
system automatically creates the printer’'s default
output queue in library QUSRSYS. The output
queue is given a text description of 'Default
output queue for printer xxxxxxxxxx', where
xxxxxxxxxx is the name of the printer.

The AUT parameter for the output queue is
assigned the same value as that specified by the
AUT parameter for the printer device description.
All other parameters are assigned their default
values. Use the Change Command Default
(CHGCMDDFT) command to change the default
values used when creating output queues with the
CRTOUTQ command.

The default output queue for a printer is owned by
the user who created the printer device
description. In the case of automatic configura-
tion, both the printer and the output queue are
owned by the system profile QPGMR.

Default System Output Queues

The system is shipped with the defaults on com-
mands to use the default output queue for the
system printer as the default output queue for all
spooled output. The system printer is defined by
the QPRTDEV system value.

When a spooled file is created by opening a
device file and the output queue specified for the
file cannot be found, the system will attempt to
place the spooled file on output queue QPRINT in
library QGPL. If for any reason the spooled file
cannot be placed on output queue QPRINT, an
error message will be sent and the output will not
be spooled.

The following output queues are supplied with the
system:

QDKT Default diskette output queue

QPRINT Default printer output queue

QPRINTS Printer output queue for special
forms

QPRINT2 Printer output queue for 2-part paper

5-4 AS/400 Data Management Guide

Creating Your Own Output
Queues

You can create output queues for each user of the
system. For example:

CRTOUTQ OUTQ(QGPL/JONES) +
TEXT('Output queue for Mike Jones')

Order of Spooled Files on an
Output Queue

The order of spooled files on an output queue is
mainly determined by the status of the spooled
file. A spooled file that is being processed by a
writer may have a status of printing (PRT status),
writer (WTR status), or pending to be printed
(PND status). Spooled files with these statuses
are placed at the top of the output queue. A
spooled file being processed by the writer may
have a held (HLD) status if a user has held the
spooled file, but the writer is not yet finished pro-
cessing the file. All other files with a status of
RDY are listed on the output queue after the file
being processed by a writer, followed by files with
statuses other than RDY.

Within each type of spooled file (RDY and
non-RDY files) the following information causes a
further ordering of the files. The items are listed
in sequence based on the amount of importance
they have on the ordering of spooled files, with the
first item having the most importance.

1. The output priority of the spooled file.
2. A date and time field (time stamp).

For output queues with SEQ(*JOBNBR) speci-
fied, the date and time that the job which
created the spooled file entered the system
are the date and time field. (A sequential job
number is also assigned to the job when it
enters the system.)

For output queues with SEQ(*FIFO) specified,
the date and time field is set to the current
system date and time when any of the fol-
lowing occur:

* A spooled file is created by opening a
device file.

* The output priority of the job which
created the spooled file is changed.

 The status of the spooled file changes
from RDY to HLD, SAV, OPN, or CLO; or

the status changes from HLD, SAV, OPN,
or CLO to RDY.

» A spooled file is moved to another output
queue which has SEQ(*FIFO) specified.

3. The SCHEDULE parameter value of the
spooled file.

Files with SCHEDULE(*JOBEND) specified
are grouped together and placed after other
spooled files of the same job that have
SCHEDULE(*IMMED) or
SCHEDULE(*FILEEND) specified.

4. The spool number of the file.

Because of the automatic sorting of spooled files,
different results occur when SEQ(*JOBNBR) is
specified for an output queue than when
SEQ(*FIFO) is specified. For example, when a
spooled file is held and then immediately released
on an output queue with SEQ(*JOBNBR) speci-
fied, the file will end up where it started; but if the
same file were held and then immediately
released on an output queue with SEQ(*FIFO)
specified, the file would be placed at the end of
the spooled files which have the same priority and
a status of RDY.

Using Multiple Output Queues

You may want to create multiple output queues
for:
¢ Special forms printing
¢ Qutput to be printed after normal working
hours
e OQOutput that is not printed

An output queue can be created to handle
spooled files that need only to be displayed or
copied to a database file. Care should be
taken to remove unneeded spooled files.

» Special uses

For example, each programmer could be
given a separate output queue.

o Output of special IBM files

You may want to consider separate queues
for the following IBM-supplied files:

— QPJOBLOG: You may want all job logs
sent to a separate queue.

— QPPGMDMP: You may want all program
dumps sent to a separate queue so you

can review and print them if needed or
clear them daily.

— QPSRVDMP: You may want all service
dumps sent to a separate queue so the
service representative can review them if
needed.

Output Queue Recovery

If a job that has produced spooled files is running
when the job or system stops abnormally, the files
remain on the output queue. Some number of
records written by active programs may still be in
main storage when the job ends and will be lost.
You should check these spooled files to ensure
that they are complete before you decide to con-
tinue using the files.

You can use the SPLFILE parameter on the End
Job (ENDJOB) command to specify if all spooled
files (except QPJOBLOG) created by the job are
to be kept for normal processing by the writer, or if
these files are to be deleted.

If an abnormal end occurs, the spooled file
QPJOBLOG will be written at the next IPL of the
system.

If a writer fails while a spooled file is being printed,
the spooled file remains on the output queue
intact.

If an output queue becomes damaged such that it
cannot be used, you will be notified by a message
sent to the system operator message queue. The
message will come from a system function when a
writer or a job tries to put or take spooled files
from the damaged queue.

A damaged output queue can be deleted using
the Delete Output Queue (DLTOUTQ) command,
or it will be deleted by the system during the next
IPL. After a damaged output queue is deleted, all
spooled files on the damaged output queue are
moved to output queue QSPRCLOUTAQ in library
QRCL. This is done by the QSPLMAINT system
job, which issues completion message CPC3308
to the QSYSOPR message queue when all
spooled files have been moved to the
QSPRCLOUTAQ output queue.

After the damaged output queue is deleted, it can

be created again by entering the Create Output
Queue (CRTOUTQ) command. Spooled files on

Chapter 5. Spool Support 5-5

output queue QSPRCLOUTQ can be moved back
to the newly created output queue using the
Change Spooled File Attributes (CHGSPLFA)
command.

Note: If the output queue that was damaged was
the default output associated with a printer, the
system will automatically re-create the output
queue when it is deleted. This system-created
output queue will have the same public authority
as specified for the device and default values for
the other parameters. After the system re-creates
the output queue, you should verify its attributes
are correct and change them as needed. The
output queue can be changed using the Change
Output Queue (CHGOUTQ) command. When a
damaged output queue associated with a printer is
deleted and created again, all spooled files on the
damaged queue will be moved to the re-created
output queue. This is done by the QSPLMAINT
system job, which issues completion message
CPC3308 to the QSYSOPR message queue when
all spooled files have been moved.

Spooling Writers

A writer is an OS/400 program that takes spooled
files from an output queue and produces them on
an output device. The spooled files that have
been placed on a particular output queue will
remain stored in the system until a writer is started
to the output queue.

The writer takes spooled files one at a time from
the output queue, based on their priority. The
writer processes a spooled file only if its entry on
the output queue indicates that it has a ready
(RDY) status. You can display the status of a par-
ticular spooled file using the Work with Output
Queue (WRKOUTQ) command.

If the spooled file has a ready status, the writer
takes the entry from the output queue and prints
the specified job and/or file separators, followed
by the output data in the file. If the spooled file
does not have a ready status, the writer leaves
the entry on the output queue and goes on to the
next entry. In most cases the writer will continue
to process spooled files (preceded by job and file
separators) until all files with a ready status have
been taken from the output queue.

5-6 AS/400 Data Management Guide

The AUTOEND parameter on the start writer com-
mands determines whether the writer continues to
wait for new spooled files to become available to
be written, end after processing one file, or end
after all spooled files with ready status have been
taken from the output queue.

Summary of Spooling Writer
Commands

The following commands may be used to control
spooling writers. For detailed descriptions of the
commands, see the CL Reference manual.

STRDKTWTR
Start Diskette Writer: Starts a spooling writer
to a specified diskette device to process
spooled files on that device.

STRPRTWTR
Start Printer Writer: Starts a spooling writer to
a specified printer device to process spooled
files on that device.

CHGWTR
Change Writer: Allows you to change some
writer attributes, such as form type, number of
file separator pages, or output queue attri-

butes.

HLDWTR
Hold Writer: Stops a writer at the end of a
record, at the end of a spooled file, or at the
end of a page.

RLSWTR
Release Writer: Releases a previously held
writer for additional processing.

ENDWTR
End Writer: Ends a spooling writer and makes
the associated output device available to the
system.

Spooled File Security

Spooled file security is primarily controlled through
the output queue which contains the spooled file.
In general, there are four ways that a user can
become authorized to control a spooled file (for
example, hold or release the spooled file):

* User is assigned spool control authority
(SPCAUT(*SPLCTL)) in the user’s user
profile.

 User is assigned job control authority
(SPCAUT(*JOBCTL)) in the user’s user profile
and the output queue is operator controllable
(OPRCTL(*YES)).

» User has the required object authority for the
output queue. The required object authority is
specified by the AUTCHK keyword on the
CRTOUTQ command. A value of *OWNER
indicates that only the owner of the output
queue is authorized via the object authority for
the output queue. A value of *DTAAUT indi-
cates that users with *CHANGE authority to
the output queue are authorized to control the
output queue.

Note: The specific authority required for
*DTAAUT are *READ, *ADD, and "DLT data
authorities.

¢ A user is always allowed to control the
spooled files created by that user.

For the Copy Spooled File (CPYSPLF), Display
Spooled File (DSPSPLF), and Send Network
Spooled File (SNDNETSPLF) commands, in addi-
tion to the four ways already listed, there is an
additional way a user can be authorized. If
DSPDTA(*YES) was specified when the output
queue was created, any user with *USE authority
to the output queue will be allowed to run these
commands. The specific authority required is
*READ data authority. Copying, displaying,
sending, and moving a file to another output
queue by changing the spooled file can be limited
by specifying DSPDTA(*OWNER). Then only the
owner of the spooled file or user with *SPLCTL
can perform these operations on the spooled file.

See the CL Reference manual for details about
the authority requirements for individual com-
mands.

To place a spooled file on an output queue, one of
the following authorities is required:

e User is assigned spool control authority
(SPCAUT(*SPLCTL)) in the user’s user
profile.

e User is assigned job control authority
(SPCAUT(*JOBCTL)) in the user’s user profile
and the output queue is operator controllable
(OPRCTL(*YES)).

e User has *READ authority to the output
queue. This authority can be given to the

public by specifying (AUT(*USE)) on the
CRTOUTQ command.

Controlling the Number of
Spooled Files in Your System

The number of spooled files in your system should
be limited. When a job is completed, spooled files
and internal job control information are kept until
the spooled files are printed or canceled. The
number of jobs on the system and the number of
spooled files known to the system increase the
amount of time needed to perform IPL and internal
searches, and increases the amount of temporary
storage required.

The number of jobs known to the system can be
displayed using the Work with System Status
(WRKSYSSTS) command.

You can use the Work with Spooled Files
(WRKSPLF) command to identify spooled files
that are no longer needed. By periodically
entering the command:

WRKSPLF SELECT(*ALL)

|

you can determine which spooled files are older
than 2 or 3 days, then delete the spooled files or
contact the users who created them.

For detailed information on minimizing the number
of job logs (for example, by using LOG(4 O
*NOLIST)), see the CL Programmer’s Guide. For
information regarding the use of system values to
control the amount of storage associated with jobs
and spooled files, refer to the Work Management
Guide. To control the storage used on your
system see “Spooling Library” on page 5-13.

Command Examples for
Additional Spooling Support

You can define some functions to provide addi-
tional spooling support. Example source and doc-
umentation for the commands, files, and programs
for these functions are part of library QUSRTOOL,
which is an optionally installed part of the OS/400
program.

The spooling support is part of the Programming

and System Management Tips and Techniques
section of QUSRTOOL. See the member

Chapter 5. Spool Support 5-7

AAAMARP in file QATTINFO of library QUSRTOOL
for information on where the documentation and
example source is located for each of these func-
tions.

Examples of spooling functions in QUSRTOOL
are:

Duplicate Spooled File (DUPSPLF) Command
Example: The DUPSPLF command can be
created to duplicate a spooled file and place the
duplicate output in a different output queue. You
can do this when you want the same spooled
output to be printed on multiple printers and each
printer normally works with a specific output
queue.

Convert Output Queue (CVTOUTQ) Command
Example: In some environments, you may want
a function to place the information displayed by
the WRKOUTQ command into a database file for
processing. Each database record will contain
some of the attributes of a spooled file and can be
manipulated with other processing techniques,
such as assigning a different output queue to all
the spooled files.

Move Spooled File (MOVSPLF) Command
Example: A typical use of the previously
described CVTOUTQ command example is to
move all spooled files from one queue to another.
The Move Spooled File (MOVSPLF) command
example performs this function.

Input Spooling Support

Input spooling takes the information from the input
device, prepares the job for scheduling, and
places an entry in a job queue. Using input
spooling, you can usually shorten job run time,
increase the number of jobs that can be run
sequentially, and improve device throughput.

The main elements of input spooling are:

Job queue
An ordered list of batch jobs submitted to
the system for running and from which
batch jobs are selected to run.

Reader
A function that takes jobs from an input
device or a database file and places them
on a job queue.

5-8 AS/400 Data Management Guide

When a batch job is read from an input source by
a reader, the commands in the input stream are
stored in the system as requests for the job, the
inline data is spooled as inline data files, and an
entry for the job is placed on a job queue. The
job information remains stored in the system
where it was placed by the reader until the job
entry is selected from the job queue for pro-
cessing by a subsystem. Figure 5-2 shows this
relationship.

Input ———» | Reader Job Queue

Disk Storage
(job input)

A

Subsystem
Processing

RSLH145-0
Figure 5-2. Relationship of Input Spooling Elements
You can use the reader functions to read an input

stream from diskette or database files. Figure 5-3
shows the typical organization of an input stream:

~

~N

//BCHJOB - BCHJOB Command

CMDS

//DATA
. Batch
One or more Job
INLINE DATA Input
. FILES (Optional)
DATARECORDS
/
Input
: Stream
)/ENDBCHJOB-OptionaIENDBCHJOBCommand -
//BCHJOB
//ENDBCHJOB
J
RSLH116-2

Figure 5-3. Typical Organization of an Input Stream

The job queue on which the job is placed is speci-
fied on the JOBQ parameter on the BCHJOB
command, on the start reader command, or in the
job description. If the JOBQ parameter on the
BCHJOB command is:

¢ *RDR: The job queue is selected from the
JOBQ parameter on the start reader
command.

+ *JOBD: The job queue is selected from the
JOBQ parameter in the job description.

» A specific job queue: The specified queue is
used.

For jobs with small input streams, you may
improve system performance by not using input
spooling. The submit job commands (SBMDBJOB
and SBMDKTJOB) read the input stream and
place the job on the job queue in the appropriate
subsystem, bypassing the spooling subsystem and
reader operations.

If your job requires a large input stream to be
read, you should use input spooling
(STRDKTRDR or STRDBRDR command) to allow
the job to be input independent of when the job is
actually processed.

Summary of Job Input
Commands

The following commands may be used when sub-
mitting jobs to the system. The start reader com-
mands may be used for spooling job input; the
submit job commands do not use spooling. For
detailed descriptions of these commands, see the
CL Reference.

BCHJOB
Batch Job: Marks the start of a job in a batch
input stream and defines the operating charac-
teristics of the job.

DATA
Data: Marks the start of an inline data file.
ENDBCHJOB

End Batch Job: Marks the end of a job in a
batch input stream.

ENDINP
End Input: Marks the end of the batch input
stream.

SBMDBJOB
Submit Database Jobs: Reads an input
stream from a database file and places the
jobs in the input stream on the appropriate job
gueues.

SBMDKTJOB
Submit Diskette Jobs: Reads an input stream
from diskette and places the jobs in the input
stream on the appropriate job queues.

STRDBRDR
Start Database Reader: Starts a reader to
read an input stream from a database file and
places the job in the input stream on the
appropriate job queue.

STRDKTRDR
Start Diskette Reader: Starts a reader to read
an input stream from diskette and places the
job in the input stream on the appropriate job
queue.

Job Queues

A job queue is an ordered list of jobs waiting to be
processed by a particular subsystem. Jobs will
not be selected from a job queue by a subsystem
unless the subsystem is active and the job queue
is not held. You can use job queues to control the
order in which jobs are run.

A base set of job queues is provided with your
system. In addition, you may create additional job
queues that you need.

IBM-Supplied Job Queues: Several job
queues are provided by IBM when your system is
shipped. IBM supplies job queues for each
IBM-supplied subsystem.

QCTL Controlling subsystem queue
QBASE QBASE subsystem job queue
QBATCH Batch subsystem queue
QINTER Interactive subsystem queue
QPGMR Programmer subsystem queue

QSPL Spooling subsystem queue

QSYSSBSD QSYSSBSD subsystem job queue
QS36MRT QS36MRT job queue

QS36EVOKE QS36EVOKE job queue

QFNC Finance subsystem job queue
QSNADS QSNADS subsystem job queue

Chapter 5. Spool Support 5-9

Using Multiple Job Queues: In many
cases, using QBATCH as the only job queue with
the default of one active job will be adequate for
your needs. If this is not adequate, you may want
to have multiple job queues so that some job
queues are active during normal working hours,
some are for special purposes, and some are
active after normal working hours. For example,
you could designate different job queues for:

* Long-running jobs so you can control how
many jobs are active at the same time.

You may also want these jobs to use a lower
priority than the other batch jobs.

* Overnight jobs that are inconvenient to run
during normal working hours.

For example, to run a Reorganize Physical
File Member (RGZPFM) command on a large
database file requires an exclusive lock on the
file. This means that other users cannot
access the file while this operation is taking
place. Additionally, this operation could take a
long time. It would be more efficient to place
this job on a job queue for jobs which run
during off-shift hours.

 High-priority jobs.

You may want to have a job queue to which
all high-priority work is sent. You could then
ensure that this work is completed rapidly and
is not delayed by lower-priority jobs.

» Jobs that are directed to particular resource
requirement such as diskette or tape.

Such a job queue would need a MAXACT
parameter of 1 in the job queue entry of the
subsystem description so that only one job at
a time uses the resource.

For example, if a tape is used for several jobs,
all jobs using tape would be placed on a
single job queue. One job at a time would
then be selected from the job queue. This
would ensure that no two jobs compete for the
same device at the same time. If this hap-
pened, it would cause one of the jobs to end
with an allocation error.

Note: Tape output cannot be spooled.

e Programmer work.

5-10 AS/400 Data Management Guide

You may want to have a job queue to handle
programmer work or types of work that could
be held while production work is being run.

* Sequential running of a series of jobs.

You may have an application in which one job
is dependent on the completion of another job.
If you place these jobs on a job queue that
selects and runs one job at a time, this would
ensure the running sequence of these jobs.

If a job requires exclusive control of a file, you
may want to place it on a job queue when the
queue is the only one active on the system,
such as during the night or on a weekend.

If you use multiple job queues, you will find that
control of the various job queues is a main consid-
eration. You will usually want to control:

e How many job queues exist.

e How many job queues are active in a partic-
ular subsystem at the same time.

e How many active jobs can be selected from a
particular job queue at a particular time.

* How many jobs can be active in a subsystem
at a particular time.

Creating Your Own Job Queues: There
are numerous reasons why you may decide that
you need job queues in addition to the ones sup-
plied by IBM. Additional job queues can be
created by using the Create Job Queue
(CRTJOBQ) command:

CRTJOBQ QGPL/QNIGHT TEXT('Job queue for +
night-time jobs')

The following lists the parameters on the Create
Job Queue (CRTJOBQ) command and what they
specify:

* OPRCTL: Specifies whether a user having
job control authority can control the job queue
(for example, if the user can hold the job
queue).

* AUTCHK: Specifies what type of authority to
the job queue will enable a user to control the
jobs on the job queue (for example, enable
the user to hold the jobs on the job queue).

e AUT: Specifies what control users have over
the job queue itself.

* TEXT: Up to 50 characters of text that
describe the job queue.

Multiple Job Queues for a Subsystem:
If the priority and sequence of the next job queue
to be used is important, you may want to assign
and control multiple job queues for each sub-
system. One use of multiple job queues is to
establish a high-priority and a normal-priority job
queue within a subsystem, allowing only one
active job on each queue at any time.

Another example: If your production batch jobs
need to be completed before a special after-hours
job queue can be made active, you could have the
last job in the normal batch job queue release the
after-hours job queue.

Refer to the SEQNBR parameter in the Add Job
Queue Entry (ADDJOBQE) command in the CL
Reference manual to determine how to set priori-
ties for jobs on job queues. For more information,
refer to the Work Management Guide.

Using the WRKJOBQ Command: Jobs
already on the job queue can be controlled using

the Work with Job Queue (WRKJOBQ) command.

The WRKJOBQ command lists either:

¢ All the job queues on the system
« All the jobs on a specific job queue

The ability to list all the job queues is important
when you are not sure what job queue was used
for a job. From the list of all job queues, you can
look at each job queue to find the job. The
display of a specific job queue provides a list of all
the jobs on the queue in the order in which they
will become active.

Transferring Jobs

If a job is on a job queue and is not yet active,

you can change the job to a different job queue
using the JOBQ parameter on the Change Job

(CHGJOB) command.

If a job becomes active, it is possible to place it
back on a job queue. See the Work Management
Guide for a discussion of the Transfer Job
(TFRJOB) and Transfer Batch Job (TFRBCHJOB)
commands.

Job Queue Security: You can maintain a
level of security with your job queue by authorizing
only certain persons (user profiles) to that job
queue. In general, there are three ways that a
user can become authorized to control a job
queue (for example, hold or release the job
gueue):

» User is assigned spool control authority
(SPCAUT(*SPLCTL)) in the user’s user
profile.

» User is assigned job control authority
(SPCAUT(*JOBCTL)) in the user’s user profile
and the job queue can be controlled by the
operator (OPRCTL(*YES)).

» User has the required object authority to the
job queue. The required object authority is
specified by the AUTCHK parameter on the
CRTJOBQ command. A value of *OWNER
indicates that only the owner of the job queue
is authorized via the object authority for the
job queue. A value of *DTAAUT indicates that
users with *CHANGE authority for the job
queue are authorized to control the job queue.

Note: The specific authority required for
*DTAAUT are *READ, *ADD, and *DLT data
authority.

See the CL Reference manual for more informa-
tion about authority requirements for individual
commands.

These three methods of authorization apply only
to the job queue, not to the jobs on the job queue.
The normal authority rules for controlling jobs
apply whether the job is on a job queue or
whether it is currently running. See the Work
Management Guide for details on the authority
rules for jobs.

Job Queue Recovery: If a command fails
or the system stops abnormally while a reader or
a submit jobs command is running and a partial
job (not all the input stream has been read) is
placed on the queue, the entire job must be
resubmitted to the job queue.

If a job is on a job queue when the system stops
abnormally without damaging that job queue, the
job remains intact on the job queue and is ready
to run when the system becomes active again.

Chapter 5. Spool Support 5-11

If the system stops abnormally while a job is
running, the job is lost and must be resubmitted to
the job queue.

If a job queue becomes damaged such that it
cannot be used, you will be notified by a message
sent to the system operator message queue. The
message will come from a system function when a
reader, Submit Jobs command, or a job tries to
put or take jobs from the damaged queue.

A damaged job queue can be deleted using the
Delete Job Queue (DLTJOBQ) command, or it will
be deleted by the system during the next IPL.
After a damaged job queue is deleted, all job files
on the damaged job queue will be moved to
output queue QSPRCLJOBAQ in library QRCL.
This is done by the QSPLMAINT system job,
which issues completion message CPC3308 to
the QSYSOPR message queue when all jobs
have been moved to the QSPRCLJOBQ output
queue.

After the damaged job queue is deleted, it can be
created again by entering the Create Job Queue
(CRTJOBQ) command. Jobs on the job queue
QSPRCLOUTQ can be moved back to the newly
created output queue using the Change Job
(CHGJOB) command.

Using an Inline Data File

An inline data file is a data file that is included as
part of a batch job when the job is read by a
reader or a submit jobs command. An inline data
file is delimited in the job by a //DATA command
at the start of the file and by an end-of-data delim-
iter at the end of the file. The end-of-data delim-
iter can be a user-defined character string or the
default of //.

The // must appear in positions 1 and 2. If your
data contains a // in positions 1 and 2, you should
use a unique set of characters such as:

/] *x* END OF DATA

To specify this as a unique end-of-data delimiter,
the ENDCHAR parameter on the //DATA
command should be coded as:

ENDCHAR('// **% END OF DATA')

Note: Inline data files can be accessed only
during the first routing step of a batch job. If a
batch job contains a Transfer Job (TFRJOB), a

5-12 AS/400 Data Management Guide

Reroute Job (RRTJOB), or a Transfer Batch Job
(TFRBCHJOB) command, the inline data files
cannot be accessed in the new routing step.

An inline data file can be either named or
unnamed. For an unnamed inline data file, either
QINLINE is specified as the file name in the
//IDATA command or no name is specified. For a
named inline data file, a file name is specified.

A named inline data file has the following charac-
teristics:

* |t has a unique name in a job; no other inline
data file can have the same name.

* It can be used more than once in a job.

e Each time it is opened, it is positioned to the
first record.

To use a named inline data file, you must either
specify the file name in the program or use an
override command to change the file name speci-
fied in the program to the name of the inline data
file. The file must be opened for input only.

An unnamed inline data file has the following char-
acteristics:

* Its name is QINLINE. (In a batch job, all
unnamed inline data files are given the same
name.)

* |t can only be used once in a job.

* When more than one unnamed inline data file
is included in a job, the files must be in the
input stream in the same order as when the
files are opened.

To use an unnamed inline data file, do one of the
following:

» Specify QINLINE in the program.

e Use an override file command to change the
file name specified in the program to
QINLINE.

If your high-level language requires unique file
names within one program, you can use QINLINE
as a file name only once. If you need to use more
than one unnamed inline data file, you can use an
override file command in the program to specify
QINLINE for additional unnamed inline data files.

Note: If you run commands conditionally and
process more than one unnamed inline data file,
the results cannot be predicted if the wrong
unnamed inline data file is used.

Open Considerations for Inline Data

Files: The following considerations apply to
opening inline data files:

» Record length specifies the length of the input
records. (Record length is optional.) When
the record length exceeds the length of the
data, a message is sent to your program. The
data is padded with blanks. When the record
length is less than the data length, the records
are truncated.

* When a file is specified in a program, the
system searches for the file as a named inline
data file before it searches for the file in a
library. Therefore, if a named inline data file
has the same name as a file that is not an
inline data file, the inline data file is always
used, even if the file name is qualified by a
library name.

* Named inline data files can be shared
between programs in the same job by speci-
fying SHARE(*YES) on a create file or over-
ride file command.

For example, if an override file command
specifying a file named INPUT and
SHARE(*YES) is in a batch job with an inline
data file named INPUT, any programs running
in the job that specify the file name INPUT will
share the same named inline data file.

Unnamed inline data files cannot be shared
between programs in the same job.

* When you use inline data files, you should
make sure the correct file type is specified on
the /DATA command. For example, if the file
is to be used as a source file, the file type on
the //DATA command must be source.

* Inline data files must be opened for input only.

Spooling Subsystem

The spooling subsystem, QSPL, is used for pro-
cessing the spooling readers and writers. The
subsystem needs to be active when readers or
writers are active. The spooling subsystem and
the individual readers and writers can be con-
trolled from jobs that run in other subsystems.

The start reader and start writer commands submit
jobs to the job queue of the spooling subsystem.

Requests for reader or writer jobs are placed on
the QSPL job queue, and the next entry on the
QSPL job queue is selected to run if:

e The number of active jobs is less than the
QSPL subsystem attribute of MAXJOBS.

* The number of active jobs from the QSPL job
queue is less than the MAXACT attribute for
the job queue.

Work management associated with the QSPL sub-
system is similar to that for other subsystems as
described in the Work Management Guide. To
control the storage used on your system see
“Spooling Library.”

Spooling Library

The spooling library (QSPL) contains database
files that are used to store data for inline data files
and spooled files. Each file in library QSPL can
have several members. Each member contains
all the data for an inline data file or spooled file.

When the spooled file is printed or deleted, its
associated database member in the spooling
library is cleared of records, but not removed, so
that it can be used for another inline data file or
spooled file. If no database members are avail-
able in library QSPL, then a member is automat-
ically created.

Printing a spooled file or clearing an output queue
does not reduce the number of associated data-
base members. If an excessive number of associ-
ated database members were created on your
system (for example, if a program went into a loop
and created thousands of spooled files), the spool
database members use storage on the system
even if you clear the output queue.

Because the system keeps the date and time
whenever a database member becomes available
(for example, clearing of records after the spooled
file has been printed or deleted), you can remove
these spooled database members in the following
ways:

e QRCLSPLSTG system value

When this system value is set, the system
removes spool database members that have
been available for more than the number of
days specified by the system value. The

Chapter 5. Spool Support 5-13

default value is 8 days. Values that can be
set for this system value are:

— 1-366: Valid range of day values that can
be set. When an available member is
older than the set number of days, it is
removed by the system.

— *NOMAX: Available spool database
members are never automatically
removed. The user must use the Reclaim
Spool Storage (RCLSPLSTG) command
to remove these members.

— *NONE: The database member is
removed as soon as the spooled file is
printed or deleted.

Note: If *NONE is specified, you will
never have available database members
in QSPL. If there are no available
members when subsequent inline data
files or spooled files are created, the
system creates members and allocates
storage to be used. This slows down the
jobs that are creating inline data files or
spooled files. It is highly recommended
that the system value never be set to
*NONE.

¢ RCLSPLSTG command

Removes available database members that
have been cleared of records for more than
the number of days specified on the
command. The command will run until it com-
pletes in the user’s process.

The procedures previously described are the only

allowable ways to remove spooled files from the
QSPL library. Any other way can cause severe

5-14 AS/400 Data Management Guide

problems. It is best to keep the QSPL library
small by periodically deleting old spooled files with
the DLTSPLF or CLROUTQ commands. This pro-
cedure allows database members to be used
again, rather than having to increase the size of
the spooling library to accommodate new data-
base members.

Displaying the data in the QSPL library may also
prevent the data from being cleared, wasting
storage space. Any command or program used to
look at a database file in the QSPL library must
allocate the database file and member; if a writer
tries to remove an allocated member after printing
is completed, it will not be able to clear the
member. Because the member is not cleared, it
cannot be used for another inline data file or
spooled file and it will not be removed by setting
the QRCLSPLSTG system value or running the
RCLSPLSTG command.

Saving a database file in the QSPL library can
cause more problems than displaying the data in
one member of the file because all members will
be allocated a much longer time when a database
file is saved. Because restoring these files
destroys present and future spooled file data,
there is no reason to save one of these files.

The QSPL library type and authority should not be
changed. The authority to the files within QSPL
should also not be changed. The QSPL library
and the files in it are created in a particular way
so that system spooling functions can access
them. Changing the library or files could cause
some system spooling functions to work incor-
rectly.

Appendix A. Feedback Area Layouts

This appendix contains Product-Sensitive Pro-
gramming Interface and Associated Guidance
Information.

Tables in this section describe the open and 1/O
feedback areas associated with any opened file.
The following information is presented for each
item in these feedback areas:

¢ Offset, which is the number of bytes from the

start of the feedback area to the location of
each item.

Data Type.

Length, which is given in number of bytes.
Contents, which is the description of the item
and the valid values for it.

File type, which is an indication of what file
types each item is valid for.

The support provided by the high-level language
you are using determines how to access this infor-
mation and how the data types are represented.
See your high-level language manual for more
information.

Open Feedback Area

The open feedback area is the part of the open
data path (ODP) that contains general information
about the file after it has been opened. It also
contains file-specific information, depending on the
file type, plus information about each device or
communications session defined for the file. This
information is set during open processing and may
be updated as other operations are performed.

Table A-1 (Page 1 of 6). Open Feedback Area

Offset Data Length Contents File Type
Type
0 Character 2 Open data path (ODP) type: All
DS Display, tape, ICF, save, printer file not
being spooled, or diskette file not being
spooled.
DB Database member.
SP Printer or diskette file being spooled or
inline data file.
2 Character 10 Name of the file being opened. If the ODP type is All
DS, this is the name of the device file or save file. If
the ODP type is SP, this is the name of the device
file or the inline data file. If the ODP type is DB, this
is the name of the database file that the member
belongs to.
12 Character 10 Name of the library containing the file. For an inline All
data file, the value is *N.
22 Character 10 Name of the spooled file. The name of a database Printer or diskette being
file containing the spooled input or output records. spooled or inline data
32 Character 10 Name of the library in which the spooled file is Printer or diskette being
located. spooled or inline data
42 Binary 2 Spooled file number. Printer or diskette being
spooled
44 Binary 2 Maximum record length. All
46 Binary 2 Maximum key length. Database

© Copyright IBM Corp. 1991, 1993

A-1

Table A-1 (Page 2 of 6). Open Feedback Area

Offset Data Length Contents File Type
Type
48 Character 10 Member name: Database, printer,
 |f ODP type DB, the member name in the file diskette, and inline data
named at offset 2. If file is overridden to
MBR(*ALL), the member name that supplied the
last record.
e If ODP type SP, the member name in the file
named at offset 22.
58 Binary 4 Reserved.
62 Binary Reserved.
66 Binary File type: All
1 Display
2 Printer
4 Diskette
5 Tape
9 Save
10 DDM
11 ICF
20 Inline data
21 Database
68 Character 3 Reserved.
71 Binary 2 Number of lines on a display screen or number of Display, printer
lines on a printed page.
Length of the null field byte map. Database
73 Binary 2 Number of positions on a display screen or number Display, printer
of characters on a printed line.
Length of the null key field byte map. Database
75 Binary 4 Number of records in the member at open time. For Database, inline data
a join logical file, the number of records in the
primary. Supplied only if the file is being opened for
input.
79 Character 2 Access type: Database

AR Arrival sequence.

KC Keyed with duplicate keys allowed.
Duplicate keys are accessed in first-
changed-first-out (FCFO) order.

KF Keyed with duplicate keys allowed.
Duplicate keys are accessed in first-in-
first-out (FIFO) order.

KL Keyed with duplicate keys allowed.
Duplicate keys are accessed in last-in-
first-out (LIFO) order.

KN Keyed with duplicate keys allowed. The
order in which duplicate keys are
accessed can be one of the following:

* First-in-first-out (FIFO)
¢ Last-in-first-out (LIFO)
* First-changed-first-out (FCFOQ)

KU Keyed, unique.

A-2 AS/400 Data Management Guide

Table A-1 (Page 3 of 6). Open Feedback Area

Offset Data Length Contents File Type
Type
81 Character 1 Duplicate key indication. Set only if the access path Database
is KC, KF, KL, KN, or KU:
D Duplicate keys allowed if the access
path is KF or KL.
U Duplicate keys are not allowed; all keys
are unique and the access path is KU.
82 Character 1 Source file indication. Database, tape,
Y File is a source file. diskette, and inline data
N File is not a source file.
83 Character 10 Reserved.
93 Character 10 Reserved.
103 Binary 2 Offset to volume label fields of open feedback area. Diskette, tape
105 Binary 2 Maximum number of records that can be read or All
written in a block when using blocked record I/O.
107 Binary 2 Overflow line number. Printer
109 Binary Blocked record 1/O record increment. Number of All
bytes that must be added to the start of each record
in a block to address the next record in the block.
111 Binary 4 Reserved.
115 Character 1 Miscellaneous flags.
Bit 1: Reserved.
Bit 2: File shareable All
0 File was not opened shareable.
1 File was opened shareable
(SHARE(*YES)).
Bit 3: Commitment control Database
0 File is not under commitment
control.
1 File is under commitment control.
Bit 4: Commitment lock level Database
0 Only changed records are locked
(LCKLVL (*CHG)).
If this bit is zero and bit 8 of the
character at offset 132 is one, then
all records accessed are locked, but
the locks are released when the
current position in the file changes
(LCKLVL (*CS)).
1 All records accessed are locked
(LCKLVL (*ALL)).
Bit 5: Member type Database

0 Member is a physical file member.
1 Member is a logical file member.

Appendix A. Feedback Area Layouts

A-3

Table A-1 (Page 4 of 6). Open Feedback Area

Offset Data Length Contents File Type
Type

Bit 6: Field-level descriptions All, except database

0 File does not contain field-level
descriptions.
1 File contains field-level descriptions.

Bit 7: DBCS or graphic-capable file Database, display,
printer, tape, diskette,

0 File does not contain DBCS or and ICF

graphic-capable fields.
1 File does contain DBCS or graphic-
capable fields.

Bit 8: End-of-file delay Database

0 End-of-file delay processing is not
being done.

1 End-of-file delay processing is being
done.

116 Character 10 Name of the requester device. For display files, this Display, ICF
is the name of the display device description that is
the requester device. For ICF files, this is the
program device name associated with the remote
location of “YREQUESTER.

This field is supplied only when either a device or
remote location name of *YREQUESTER is being
attached to the file by an open or acquire operation.
Otherwise, this field contains *N.

126 Binary 2 File open count. If the file has not been opened All
shareable, this field contains a 1. If the file has
been opened shareable, this field contains the
number of programs currently attached to this file.

128 Binary 2 Reserved.

130 Binary 2 Number of based-on physical members opened. For Database
logical members, this is the number of physical
members over which the logical member was
opened. For physical members, this field is always
set to 1.

132 Character 1 Miscellaneous flags.
Bit 1: Multiple member processing Database

0 Only the member specified will be
processed.
1 All members will be processed.

Bit 2: Join logical file Database

0 File is not a join logical file.
1 File is a join logical file.

Bit 3: Local or remote data Database

0 Data is stored on local system.
1 Data is stored on remote system.

A-4 AS/400 Data Management Guide

Table A-1 (Page 5 of 6). Open Feedback Area

Offset Data Length Contents File Type
Type
Bit 4: Remote System/38 or AS/400 data. Database
Applicable only if the value of Bit 3 is 1.
0 Data is on a remote System/38 or
AS/400 system.
1 Data is not on a remote System/38
or AS/400 system.
Bit 5: Separate indicator area Printer, display, and
0 Indicators are in the 1/O buffer of the ICF
program.
1 Indicators are not in the I/O buffer of
the program. The DDS keyword,
INDARA, was used when the file
was created.
Bit 6: User buffers All
0 System creates I/O buffers for the
program.
1 User program supplies 1/O buffers.
Bit 7: Reserved.
Bit 8: Additional commitment lock level indi- Database
cator. This is only valid if bit 3 of the
character at offset 115 is one.
If bit 4 of the character at offset 115 is
zero:
0 Only changed records are locked
(LCKLVL(*CHG)).
1 All records accessed are locked, but
the locks are released when the
current position in the file changes
(LCKLVL(*CS)).
If bit 4 of the character at offset 115 is
one:
0 All records accessed are locked
(LCKLVL(*ALL)).
1 Reserved.

133 Character 2 Open identifier. The value is unique for a full (non- All
shared) open operation of a file. This is used for
display and ICF files, but is set up for all file types.

It allows you to match this file to an entry on the
associated data queue.

135 Binary 2 The field value is the maximum record format length, Printer, diskette, tape,
including both data and file-specific information such and ICF
as: first-character forms control, option indicators,)
response indicators, source sequence numbers, and
program-to-system data. If the value is zero, then
use the field at offset 44.

137 Binary 2 Coded character set identifier (CCSID) of the char- Database

acter data in the buffer.

Appendix A. Feedback Area Layouts

A-5

Table A-1 (Page 6 of 6). Open Feedback Area

Offset Data Length Contents File Type
Type
139 Character 1 Miscellaneous flags. Database
Bit 1: Null-capabile field file.
0 File does not contain null-capable
fields.
1 File contains null-capable fields.
Bit 2: Variable length fields file. Database
0 File does not contain any variable
length fields.
1 File contains variable length fields.
Bit 3: Variable length record processing Database
0 Variable length record processing
will not be done.
1 Variable length record processing
will be done.
Bit 4: CCSID character substitution Database, Display
0 No substitution characters will be
used during CCSID data conversion.
1 Substitution characters may be used
during CCSID data conversion.
Bits 5-8: Reserved.
140 Character 6 Reserved.
146 Binary 2 Number of devices defined for this ODP. For dis- All
plays, this is determined by the number of devices
defined on the DEV parameter of the Create Display
File (CRTDSPF) command. For ICF, this is deter-
mined by the number of program devices defined or
acquired with the Add ICF Device Entry
(ADDICFDEVE) or the Override ICF Device Entry
(OVRICFDEVE) command. For all other files, it has
the value of 1.
148 Character Device name definition list. See “Device Definition All

List” on page A-7 for a description of this array.

A-6 AS/400 Data Management Guide

Device Definition List

The device definition list part of the open feedback
area is an array structure. Each entry in the array
contains information about each device or commu-
nications session attached to the file. The number
of entries in this array is determined by the

number at offset 146 of the open feedback area.
The device definition list begins at offset 148 of
the open feedback area. The offsets shown for it
are from the start of the device definition list rather
than the start of the open feedback area.

Table A-2 (Page 1 of 4). Device Definition List

Offset Data Length Contents File Type
Type

0 Character 10 Program device name. For database files, the value is All, except inline
DATABASE. For printer or diskette files being spooled, data
the value is *N. For save files, the value is *"NONE.

For ICF files, the value is the name of the program
device from the ADDICFDEVE or OVRICFDEVE
command. For all other files, the value is the name of
the device description.

10 Character 50 Reserved.

60 Character 10 Device description name. For printer or diskette files All, except database
being spooled, the value is *N. For save files, the and inline data
value is *NONE. For all other files, the value is the
name of the device description.

70 Character 1 Device class. All, except database
hex 01 Display and inline data
hex 02 Printer
hex 04 Diskette
hex 05 Tape
hex 09 Save
hex 0B ICF

71 Character 1 Device type.
hex 02 5256 Printer
hex 07 5251 Display Station
hex 08 Spooled
hex 0A BSCEL
hex 0B 5291 Display Station
hex 0C 5224/5225 printers
hex 0D 5292 Display Station
hex OE APPC
hex OF 5219 Printer
hex 10 5583 Printer (DBCS)
hex 11 5553 Printer
hex 12 5555-B01 Display Station
hex 13 3270 Display Station
hex 14 3270 Printer
hex 15 Graphic-capable device
hex 16 Financial Display Station
hex 17 3180 Display Station

Appendix A. Feedback Area Layouts A-7

Table A-2 (Page 2 of 4). Device Definition List

Offset Data Length Contents File Type
Type

hex 18 Save file

hex 19 3277 DHCF Device

hex 1A 9347 Tape Unit

hex 1B 9348 Tape Unit

hex 1C 9331-1 Diskette Unit

hex 1D 9331-2 Diskette Unit

hex 1E Intrasystem communications support
hex 1F Asynchronous communications support
hex 20 SNUF

hex 21 4234 (SCS) Printer

hex 22 3812 (SCS) Printer

hex 23 4214 Printer

hex 24 4224 (IPDS*) Printer

hex 25 4245 Printer

hex 26 3179-2 Display Station
hex 27 3196-A Display Station
hex 28 3196-B Display Station
hex 29 5262 Printer

hex 2A 6346 Tape Unit

hex 2B 2440 Tape Unit

hex 2C 9346 Tape Unit

hex 2D 6331 Diskette Unit

hex 2E 6332 Diskette Unit

hex 30 3812 (IPDS) Printer

hex 31 4234 (IPDS) Printer

hex 32 IPDS printer, model unknown
hex 33 3197-C1 Display Station
hex 34 3197-C2 Display Station
hex 35 3197-D1 Display Station
hex 36 3197-D2 Display Station
hex 37 3197-W1 Display Station
hex 38 3197-W2 Display Station
hex 39 5555-E01 Display Station
hex 3A 3430 Tape Unit

hex 3B 3422 Tape Unit

hex 3C 3480 Tape Unit

hex 3D 3490 Tape Unit

hex 3E 3476-EA Display Station
hex 3F 3477-FG Display Station
hex 40 3278 DHCF device

hex 41 3279 DHCF device

hex 42 ICF finance device

hex 43 Retail communications device
hex 44 3477-FA Display Station
hex 45 3477-FC Display Station
hex 46 3477-FD Display Station
hex 47 3477-FW Display Station
hex 48 3477-FE Display Station
hex 49 6367 Tape Unit

hex 4A 6347 Tape Unit

A-8 AS/400 Data Management Guide

Table A-2 (Page 3 of 4). Device Definition List

Offset Data Length Contents File Type
Type
hex 4D Network Virtual Terminal Display Station
hex 4E 6341 Tape Unit
hex 4F 6342 Tape Unit
hex 50 6133 Diskette Unit
hex 51 5555-C01 Display Station
hex 52 5555-F01 Display Station
hex 53 6366 Tape Unit
hex 54 7208 Tape Unit
hex 55 6252 (SCS) Printer
hex 56 3476-EC Display Station
hex 57 4230 (IPDS) Printer
hex 58 5555-G01 Display Station
hex 59 5555-G02 Display Station
hex 5A 6343 Tape Unit
hex 5B 6348 Tape Unit
hex 5C 6368 Tape Unit
hex 5D 3486-BA Display Station
hex 5F 3487-HA Display Station
hex 60 3487-HG Display Station
hex 61 3487-HW Display Station
hex 62 3487-HC Display Station
72 Binary 2 Number of lines on the display screen. Display
74 Binary 2 Number of positions in each line of the display screen. Display
76 Character 2 Bit flags. Display
Bit 1: Blinking capability.
0 Display is not capable of blinking.
1 Display is capable of blinking.
Bit 2: Device location. Display
0 Local device.
1 Remote device.
Bit 3: Acquire status. This bit is set even if the Display, ICF
device is implicitly acquired at open time.
0 Device is not acquired.
1 Device is acquired.
Bit 4: Invite status. Display, ICF
0 Device is not invited.
1 Device is invited.
Bit 5: Data available status (only if device is Display, ICF

invited).

0 Data is not available.
1 Data is available.

Appendix A. Feedback Area Layouts

A-9

Table A-2 (Page 4 of 4). Device Definition List

Offset Data Length Contents File Type
Type
Bit 6: Transaction status. ICF
0 Transaction is not started. An evoke
request has not been sent, a detach
request has been sent or received, or
the transaction has completed.
1 Transaction is started. The transaction
is active. An evoke request has been
sent or received and the transaction
has not ended.
Bit 7: Requester device. Display, ICF
0 Not a requester device.
1 A requester device.
Bit 8: DBCS device. Display
0 Device is not capable of processing
double-byte data.
i Device is capabie of processing
double-byte data.
Bits 9-10: Reserved.
Bit 11: DBCS keyboard. Display
0 Keyboard is not capable of entering
double-byte data.
1 Keyboard is capable of entering
double-byte data.
Bits 12-16: Reserved.
78 Character 1 Synchronization level. ICF
hex 00 The transaction was built with
SYNLVL(*NONE). Confirm processing is
not allowed.
hex 01 The transaction was built with
SYNLVL(*CONFIRM). Confirm processing
is allowed.
79 Character 1 Conversation type. ICF
hex DO Basic conversation (CNVTYPE(*USER)).
hex D1 Mapped conversation (CNVTYPE(*SYS)).
80 Character 50 Reserved.
Volume Label Fields
Table A-3. Volume Label Fields
Offset Data Length Contents File Type
Type
0 Character 128 Volume label of current volume. Diskette, tape
128 Character 128 Header label 1 of the opened file. Diskette, tape
256 Character 128 Header label 2 of the opened file. Tape

A-10 AS/400 Data Management Guide

information, such as the count of I/O operations,
reflects the number of operations on blocks of
records and not the number of records. See your
high-level language manual to determine if your
program uses blocked record I/O.

I/O Feedback Area

The results of I/O operations are communicated to
the program using OS/400 messages and 1/O
feedback information. The I/O feedback area is

updated for every 1/O operation unless your The 1/0 feedback area consists of two parts: a
program is using blocked record I/O. In that case, common area and a file-dependent area. The file-
the feedback area is updated only when a block of dependent area varies by the file type.

records is read or written. Some of the informa-

tion reflects the last record in the block. Other Common I/O Feedback Area

Table A-4 (Page 1 of 4). Common I/O Feedback Area

Offset Data Length Contents
Type
0 Binary 2 Offset to file-dependent feedback area.
2 Binary 4 Write operation count. Updated only when a write operation completes success-

fully. For blocked record 1/O operations, this count is the number of blocks, not
the number of records.

6 Binary 4 Read operation count. Updated only when a read operation completes success-
fully. For blocked record I/O operations, this count is the number of blocks, not
the number of records.

10 Binary 4 Write-read operation count. Updated only when a write-read operation com-
pletes successfully.

14 Binary 4 Other operation count. Number of successful operations other than write, read,
or write-read. Updated only when the operation completes successfully. This
count includes update, delete, force-end-of-data, force-end-of-volume, change-
end-of-data, release record lock, and acquire/release device operations.

18 Character 1 Reserved.
19 Character 1 Current operation.

hex 01 Read or read block or read from invited devices
hex 02 Read direct

hex 03 Read by key

hex 05 Write or write block
hex 06 Write-read

hex 07 Update

hex 08 Delete

hex 09 Force-end-of-data
hex 0A Force-end-of-volume
hex 0D Release record lock
hex OE Change end-of-data
hex 11 Release device

hex 12 Acquire device

Appendix A. Feedback Area Layouts A-11

Table A-4 (Page 2 of 4). Common I/O Feedback Area

Offset Data Length Contents
Type
20 Character 10 Name of the record format just processed, which is either:

¢ Specified on the I/O request, or
» Determined by default or format selection processing

For display files, the default name is either the name of the only record format in
the file or the previous record format name for the record written to the display
that contains input-capable fields. Because a display file may have multiple
formats on the display at the same time, this format may not represent the
format where the last cursor position was typed.

For ICF files, the format name is determined by the system, based on the format
selection option used. Refer to the ICF Programmer’s Guide for more informa-
tion.

30 Character 2 Device class:
Byte 1:

hex 00 Database
hex 01 Display
hex 02 Printer
hex 04 Diskette

hex 05 Tape
hex 09 Save
hex 0B ICF

Byte 2 (if byte 1 contains hex 00):

hex 00 Nonkeyed file
hex 01 Keyed file

Byte 2 (if byte 1 does not contain hex 00):

hex 02 5256 Printer

hex 07 5251 Display Station
hex 08 Spooled

hex OA° BSCEL

hex 0B 5291 Display Station
hex 0C 5224/5225 printers

hex 0D 5292 Display Station
hex OE APPC

hex OF 5219 Printer

hex 10 5583 Printer (DBCS)
hex 11 5553 Printer

hex 12 5555-B01 Display Station
hex 13 3270 Display Station
hex 14 3270 Printer

hex 15 Graphic-capable device
hex 16 Financial Display Station
hex 17 3180 Display Station
hex 18 Save file

hex 19 3277 DHCF device
hex 1A 9347 Tape Unit

hex 1B 9348 Tape Unit

hex 1C 9331-1 Diskette Unit

A-12 AS/400 Data Management Guide

Table A-4 (Page 3 of 4). Common I/O Feedback Area

Offset Data Length Contents
Type

hex 1D 9331-2 Diskette Unit
hex 1E Intrasystem communications support
hex 1F Asynchronous communications support
hex 20 SNUF
hex 21 4234 (SCS) Printer
hex 22 3812 (SCS) Printer
hex 23 4214 Printer
hex 24 4224 (IPDS) Printer
hex 25 4245 Printer
hex 26 3179-2 Display Station
hex 27 3196-A Display Station
hex 28 3196-B Display Station
hex 29 5262 Printer
hex 2A 6346 Tape Unit
hex 2B 2440 Tape Unit
hex 2C 9346 Tape Unit
hex 2D 6331 Diskette Unit
hex 2E 6332 Diskette Unit
hex 30 3812 (IPDS) Printer
hex 31 4234 (IPDS) Printer
hex 32 IPDS printer, model unknown
hex 33 3197-C1 Display Station
hex 34 3197-C2 Display Station
hex 35 3197-D1 Display Station
hex 36 3197-D2 Display Station
hex 37 3197-W1 Display Station
hex 38 3197-W2 Display Station
hex 39 5555-E01 Display Station
hex 3A 3430 Tape Unit
hex 3B 3422 Tape Unit
hex 3C 3480 Tape Unit
hex 3D 3490 Tape Unit
hex 3E 3476-EA Display Station
hex 3F 3477-FG Display Station
hex 40 3278 DHCF device
hex 41 3279 DHCF device
hex 42 ICF finance device
hex 43 Retail communications device
hex 44 3477-FA Display Station
hex 45 3477-FC Display Station
hex 46 3477-FD Display Station
hex 47 3477-FW Display Station
hex 48 3477-FE Display Station
hex 49 6367 Tape Unit
hex 4A 6347 Tape Unit
hex 4D Network Virtual Terminal Display Station
hex 4E 6341 Tape Unit
hex 4F 6342 Tape Unit
hex 50 6133 Diskette Unit
hex 51 5555-C01 Display Station

Appendix A. Feedback Area Layouts

A-13

Table A-4 (Page 4 of 4). Common l/O Feedback Area

Offset Data Length Contents
Type

hex 52 5555-F01 Display Station
hex 53 6366 Tape Unit
hex 54 7208 Tape Unit
hex 55 6252 (SCS) Printer
hex 56 3476-EC Display Station
hex 57 4230 (IPDS) Printer
hex 58 5555-G01 Display Station
hex 59 5555-G02 Display Station
hex 5A 6343 Tape Unit
hex 5B 6348 Tape Unit
hex 5C 6368 Tape Unit
hex 5D 3486-BA Display Station
hex 5F 3487-HA Display Station
hex 60 3487-HG Display Station
hex 61 3487-HW Display Station
hex 62 3487-HC Display Station

32 Character 10 Device name. The name of the device for which the operation just completed.
Supplied only for display, printer, tape, diskette, and ICF files. For printer or
diskette files being spooled, the value is *N. For ICF files, the value is the
program device name. For other files, the value is the device description name.

42 Binary 4 Length of the record processed by the last I/O operation (supplied only for an
ICF, display, tape, or database file). On ICF write operations, this is the record
length of the data. On ICF read operations, it is the record length of the record
associated with the last read operation.

46 Character 80 Reserved.

126 Binary 2 Number of records retrieved on a read request for blocked records or sent on a
write or force-end-of-data or force-end-of-volume request for blocked records.
Supplied only for database, diskette, and tape files.

128 Binary 2 For output, the field value is the record format length, including first-character
forms control, option indicators, source sequence numbers, and program-to-
system data. If the value is zero, use the field at offset 42.
For input, the field value is the record format length, including response indica-
tors and source sequence numbers. If the value is zero, use the field at offset
42.

130 Character 2 Reserved.

132 Binary Current block count. The number of blocks of the tape data file already written
or read. For tape files only.

136 Character 8 Reserved.

A-14 AS/400 Data Management Guide

I/0 Feedback Area for ICF and

Display Files

Table A-5 (Page 1 of 3). I/O Feedback Area for ICF and Display Files

tion key was pressed.

For ICF files, this field will always contain the value hex F1 to
imitate the Enter key being pressed on a display device.

For display files, this field will contain the 1-byte hexadecimal
value returned from the device.

Hex Codes Function Keys

hex 31
hex 32
hex 33
hex 34
hex 35
hex 36
hex 37
hex 38
hex 39
hex 3A
hex 3B
hex 3C
hex B1
hex B2
hex B3
hex B4
hex B5

Offset Data Length Contents File Type
Type
0 Character 2 Flag bits. Display
Bit 1: Cancel-read indicator.

0 The cancel-read operation did not cancel the
read request.

1 The cancel-read operation canceled the read
request.

Bit 2: Data-returned indicator.

0 The cancel-read operation did not change the
contents of the input buffer.

1 The cancel-read operation placed the data
from the read-with-no-wait operation into the
input buffer.

Bit 3: Command key indicator.

0 Conditions for setting this indicator did not
occur.

1 The Print, Help, Home, Roll Up, Roll Down, or
Clear key was pressed. The key is enabled
with a DDS keyword, but without a response
indicator specified.

Bits 4-16: Reserved.
2 Character 1 Attention indicator byte (AID). This field identifies which func-

Appendix A. Feedback Area Layouts

A-15

Table A-5 (Page 2 of 3). I/O Feedback Area for ICF and Display Files

Offset

Data
Type

Length

Contents

File Type

11

13

15

17

Character

Binary

Binary

Binary

Binary

Character

Character

\V]

hex B6 18

hex B7 19

hex B8 20

hex B9 21

hex BA 22

hex BB 23

hex BC 24

hex BD Clear

hex F1 Enter/Rec Adv

hex F3 Help (not in operator-error mode)
hex F4 Roll Down

hex F5 Roll Up

hex F6 Print

hex F8 Record Backspace

hex 3F Auto Enter (for Selector Light Pen)

Cursor location (line and position). Updated on input oper-
ations that are not subfile operations that return data to the
program. For example, hex 0102 means line 1, position 2.
Line 10, position 33 would be hex 0A21.

Actual data length. For an ICF file, see the ICF Programmer’s
Guide for additional information. For a display file, this is the
length of the record format processed by the 1/O operation.

Relative record number of a subfile record. Updated for a
subfile record operation. For input operations, updated only if
data is returned to the program. If multiple subfiles are on the
display, this offset will contain the relative record number for
the last subfile updated.

Indicates the lowest subfile relative record number currently
displayed in the uppermost subfile display area if the last write
operation was done to the subfile control record with SFLDSP
specified. Updated for roll up and roll down operations. Reset
to 0 on a write operation to another record. Not set for
message subfiles.

Total number of records in a subfile. Updated on a put-relative
operation to any subfile record. The number is set to zero on a
write or write-read operation to any subfile control record with
the SFLINZ keyword optioned on. If records are put to multiple
subfiles on the display, this offset will contain the total number
of records for all subfiles assuming that no write or write-read
operations were performed to any subfile control record with
the SFLINZ keyword optioned on.

Cursor location (line and position) within active window.
Updated on input operations that are not subfile operations that
return data to the program. For example, hex 0203 means line
2, position 3 relative to the upper-left corner of the active
window.

Reserved.

Display, ICF

Display

Display, ICF

Display

Display

Display

Display

A-16 AS/400 Data Management Guide

Table A-5 (Page 3 of 3). I/O Feedback Area for ICF and Display Files

Offset

Data
Type

Length

Contents

File Type

34

36

38

46

47
48

49
59
63
71

Character

Character

Character

Character

Character

Character

Character
Character
Character

Character

2

10

Major return code.

Display, ICF

00 Operation completed successfully.
02 Input operation completed successfully, but job is

being canceled (controlled).

03 Input operation completed successfully, but no data

received.
04 Output exception.
08 Device already acquired.

11 Read from invited devices was not successful.

34 Input exception.

80 Permanent system or file error.

81 Permanent session or device error.
82 Acquire or open operation failed.

83 Recoverable session or device error.

Minor return code. For the values for a display file, see the

Guide to Programming Displays. For the values for an ICF file,
see the ICF Programmer’s Guide and the appropriate
communications-type programmer's guide.

Systems Network Architecture (SNA) sense return code. For ICF
some return codes, this field may contain more detailed infor-

mation about the reason for the error.

For a description of the

SNA sense codes, see the appropriate SNA manual.

Safe indicator:

ICF

0 An end-of-text (ETX) control character has not been

received.

1 An ETX control character has been received.

Reserved.

Request Write (RQSWRT) command from remote ICF

system/application.

0 RQSWRT not received
1 RQSWRT received

Record format name received from the
Reserved.
Mode name.

Reserved.

remote system. ICF

ICF

Display, ICF

Appendix A. Feedback Area Layouts

A-17

I/0 Feedback Area for Printer
Files

Table A-6. I/O Feedback Area for Printer Files

Offset Data Length Contents
Type
Binary 2 Current line number in a page.
Binary 4 Current page count.
6 Character 28 Reserved.
34 Character 2 Major return code.
00 Operation completed successfully.
80 Permanent system or file error.
81 Permanent device error.
82 Open operation failed.
83 Recoverable device error occurred.
36 Character 2 Minor return code. For the values for a printer file, refer to the Guide to Pro-

gramming for Printing.

I/O Feedback Area for Database
Files

Table A-7 (Page 1 of 2). I/O Feedback Area for Database Files

Offset Data Length Contents
Type
0 Binary 4 Size of the database feedback area, including the key and the null key field byte
map.
4 Character 4 Bits 1-32: Each bit represents a join logical file in JFILE keyword.
0 JDFTVAL not supplied for file
1 JDFTVAL supplied for file
8 Binary 2 Offset from the beginning of the I/O feedback area for database files to the null
key field byte map which follows the key value (which begins at offset 34 in this
area).
- 10 Binary 2 Number of locked records.
12 Binary 2 Maximum number of fields.
14 Binary 4 Offset to the field-mapping error-bit map.
18 Character 1 Current file position indication.

Bit 1: Current file position is valid for get-next-key equal operation.

0 File position is not valid.
1 File position is valid.

Bits 2-8: Reserved.

A-18 AS/400 Data Management Guide

Table A-7 (Page 2 of 2). I/O Feedback Area for Database Files

Offset Data Length Contents
Type
19 Character 1 Current record deleted indication:

Bits 1-2: Reserved.
Bit 3: Next message indicator.

0 Next message not end of file.
1 Next message may be end of file.

Bit 4: Deleted record indicator.

0 Current file position is at an active record.
1 Current file position is at a deleted record.

Bit 5: Write operation key feedback indicator.

0 Key feedback is not provided by last write operation.
1 Key feedback is provided by last write operation.

Bit 6: File position changed indicator. Set only for read and positioning 1/0
operations. Not set for write, update, and delete 1/O operations.

0 File position did not change.
1 File position did change.

Bit 7: Pending exception indicator. Valid for files open for input only and
SEQONLY(*YES N) where N is greater than 1.

0 Pending retrieval error does not exist.
1 Pending retrieval error does exist.

Bit 8: Duplicate key indicator.

0 The key of the last read or write operation was not a duplicate
key.
1 The key of the last read or write operation was a duplicate key.

20 Binary 2 Number of key fields. Use this offset for binary operations. Use the next offset
(offset 21) for character operations. These offsets overlap and provide the same
value (there can be no more than 32 key fields, and only the low-order byte of
offset 20 is used).

21 Character 1 Number of key fields.

22 Character 4 Reserved.

26 Binary 2 Key length.

28 Binary 2 Data member number.

30 Binary 4 Relative record number in data member.
34 Character * Key value.

* Character * Null key field byte map.

Appendix A. Feedback Area Layouts A-19

Get Attributes

Performing the get attributes operation allows you
to obtain certain information about a specific
display device or ICF session.

Table A-8 (Page 1 of 5). Get Attributes

Offset Data Length Contents File Type
Type
0 Character 10 Program device name. Display, ICF
10 Character 10 Device description name. Name of the device Display, ICF
description associated with this entry.
20 Character 10 User ID. Display, ICF
30 Character 1 Device class: Dispiay, ICF
D Display
| ICF
U Unknown
31 Character 6 Device type:

3179 3179 Display Station
317902 3179-2 Display Station
3180 3180 Display Station
3196A 3196-A1/A2 Display Station
3196B 3196-B1/B2 Display Station
3197C1 3197-C1 Display Station
3197C2 3197-C2 Display Station
3197D1 3197-D1 Display Station
3197D2 3197-D2 Display Station
3197W1 3197-W1 Display Station
3197W2 3197-W2 Display Station
3270 3270 Display Station
3476EA 3476-EA Display Station
3476EC 3476-EC Display Station
3477FA 3477-FA Display Station
3477FC 3477-FC Display Station
3477FD 3477-FD Display Station
3477FE 3477-FE Display Station
3477FG 3477-FG Display Station
3477FW 3477-FW Display Station
525111 5251 Display Station
5291 5291 Display Station
5292 5292 Display Station
529202 5292-2 Display Station

A-20 AS/400 Data Management Guide

Table A-8 (Page 2 of 5). Get Attributes

Offset Data Length Contents File Type
Type
5555B1 5555-B01 Display Station Display, ICF
5555C1 5555-C01 Display Station
5555E1 5555-E01 Display Station
5555F1 5555-F01 Display Station
5555G1 5555-G01 Display Station
5555G2 5555-G02 Display Station
DHCF77 3277 DHCF device
DHCF78 3278 DHCF device
DHCF79 3279 DHCF device
3486BA 3486-BA Display Station
3487HA 3487-HA Display Station
3487HC 3487-HC Display Station
3487HG 3487-HG Display Station
3487HW 3487-HW Display Station
APPC Advance program-to-program commu-
nications device
ASYNC Asynchronous communications device
BSC Bisynchronous communications device
BSCEL BSCEL communications device
FINANC ICF Finance communications device
INTRA Intrasystem communications device
LUA LU1 communications device
RETAIL RETAIL communications device
SNUF SNA upline facility communications
device
37 Character 1 Requester device. This flag indicates whether this Display, ICF
entry is defining a “REQUESTER device.
N Not a *REQUESTER device (commu-
nications source device).
Y A *REQUESTER device (communica-
tions target device).
38 Character 1 Acquire status. Set even if device is implicitly Display, ICF
acquired at open time.
N Device is not acquired.
Y Device is acquired.
39 Character 1 Invite status. Display, ICF
Y Device is invited.
N Device is not invited.
40 Character 1 Data available. Display, ICF
Y Invited data is available.
N Invited data is not available.
41 Binary 2 Number of rows on display. Display
43 Binary 2 Number of columns on display. Display
45 Character 1 Display allow blink. Display

Y Display is capable of blinking.
N Display is not capable of blinking.

Appendix A. Feedback Area Layouts

A-21

Table A-8 (Page 3 of 5). Get Attributes

Offset Data Length Contents File Type
Type
46 Character 1 Online/offline status. Display
(0] Display is online.
F Display is offline.
47 Character 1 Display location. Display
L Local display.
R Remote display.
48 Character 1 Display type. Display
A Alphanumeric or Katakana.
I DBCS.
49 Character 1 Keyboard type of display. Display
A Alphanumeric or Katakana keyboard.
I DBCS keyboard.
50 Character 1 Transaction status. All communication types. ICF
N Transaction is not started. An evoke
request has not been sent, a detach
request has been sent or received, or
the transaction has completed.
Y Transaction is started. The transaction
is active. An evoke request has been
sent or received and the transaction has
not ended.
51 Character 1 Synchronization level. APPC and INTRA. ICF
0 Synchronization level 0
(SYNLVL(*NONE)).
1 Synchronization level 1
(SYNLVL(*CONFIRM)).
52 Character 1 Conversation being used. APPC only. ICF
M Mapped conversation.
B Basic conversation.
53 Character 8 Remote location name. All communication types. ICF
61 Character 8 Local LU name. APPC only. ICF
69 Character 8 Local network ID. APPC only. ICF
77 Character 8 Remote LU name. APPC only. ICF
85 Character 8 Remote network ID. APPC only. ICF
93 Character 8 Mode. APPC only. ICF
101 Character 1 Controller information. Display
Y Display is attached to a controller that
supports an enhanced interface for non-
programmable work stations.
N Display is not attached to a controller
that supports an enhanced interface for
nonprogrammable work stations.
102 Character 42 Reserved. Display, ICF

A-22 AS/400 Data Management Guide

Table A-8 (Page 4 of 5). Get Attributes

Offset

Data
Type

Length

Contents

File Type

Note: The following information is provided only for an Integrated Service Digital Network (ISDN) used in the ICF or

144

146

148

150

190
194

196

198

238
239

Binary

Character

Character

Character

Character

Binary

Character

Character

Character

Character

2

40

40

ISDN remote number length in bytes. Consists of the
total of the lengths of the next three fields: ISDN
remote numbering type, ISDN remote numbering
plan, and the ISDN remote number. If the ISDN
remote number has been padded on the right with
blanks, the length of that padding is not included in
this total.

If ISDN is not used, this field contains O.

ISDN remote numbering type (decimal).

00 Unknown.

01 International.

02 National.

03 Network-specific.
04 Subscriber.

06 Abbreviated.

ISDN remote numbering plan (decimal).

00 Unknown.

01 ISDN/Telephony.
03 Data.

04 Telex**.

08 National Standard.
09 Private.

The ISDN remote number in EBCDIC, padded on
the right with blanks if necessary to fill the field.

Reserved.

ISDN remote subaddress length in bytes. Consists
of the total of the lengths of the next two fields:
ISDN remote subaddress type and the ISDN remote
subaddress. If the ISDN remote subaddress has
been padded on the right with blanks, the length of
that padding is not included in this total.

If ISDN is not used, this field contains O.
ISDN remote subaddress type (decimal).

00 NSAP.
01 User-specified.

ISDN remote subaddress (EBCDIC representation of
the original hexadecimal value, padded on the right
with zeros).

Reserved.

ISDN connection (decimal).

0 Incoming ISDN call.
1 Outgoing ISDN call.
Other Non-ISDN connection.

Display, ICF

Display, ICF

Display, ICF

Display, ICF

Display, ICF
Display, ICF

Display, ICF

Display, ICF

Display, ICF
Display, ICF

remote display session. Also, not all of the information will be available if the area to receive it is too small.

Appendix A. Feedback Area Layouts

A-23

Table A-8 (Page 5 of 5). Get Attributes

Offset Data Length Contents File Type
Type
240 Binary 2 ISDN remote network address length in bytes. If the Display, ICF

ISDN remote network address has been padded on
the right with blanks, the length of that padding is

not included.
If ISDN is not used, this field contains 0.
242 Character 32 The ISDN remote network address in EBCDIC, Display, ICF
padded on the right with blanks, if necessary, to fill
the field.
274 Character 4 Reserved. Display, ICF
278 Character 2 ISDN remote address extension length in bytes. Display, ICF

Consists of the total of the lengths of the next two
fields: ISDN remote address extension type and the
ISDN remote address extension. If the ISDN remote
address extension has been padded on the right
with zeros, the length of that padding is not included.

If ISDN is not used or there is no ISDN remote
address extension, this field contains 0.

280 Character 1 ISDN remote address extension type (decimal). Display, ICF
0 Address assigned according to 1SO
8348/AD2
2 Address not assigned according to ISO
8348/AD2
Other Reserved.
281 Character 40 ISDN remote address extension (EBCDIC represen- Display, ICF

tation of the original hexadecimal value, padded on
the right with zeros).

321 Character 4 Reserved. Display, ICF
325 Character 1 X.25 call type (decimal). Display, ICF
0 Incoming Switched Virtual Circuit (SVC)
1 Outgoing SVC
2 Not X.25 SVC
Other Reserved.

Note: The following information is available only for when your program was started as a result of a received
program start request. Also, not all of the information will be available if the area to receive it is to small.

326 Character 64 Transaction program name. Name of the program ICF
specified to be started as a result of the received
program start request, even if a routing list caused a
different program to be started.

A-24 AS/400 Data Management Guide

Appendix B. Double-Byte Character Set Support

This appendix contains information that you need
if you use double-byte characters. This includes
the following topics:

» Double-byte character set (DBCS) fundamen-
tals

* Processing double-byte characters
* Device file support
e Display support

» Copying files that contain double-byte charac-
ters

» Writing application programs that process
double-byte characters

* DBCS font tables
* DBCS sort tables
» DBCS conversion dictionaries
¢ Using DBCS conversion
DBCS printer and spooling support information

can be found in the Guide to Programming for
Printing.

1-Byte Code

(SBCS) (DBCS)
A —— XcCtr A
B —— XcC2 B
1 — XFV 1
2 — XF2 2
)

H

7

L]

it

4

T

Double-Byte Character Set
Fundamentals

Some languages, such as Chinese, Japanese,
and Korean, have a writing scheme that uses
many different characters that cannot be repre-
sented with single-byte codes. To create coded
character sets for such languages, the system
uses two bytes to represent each character.
Characters that are encoded in two-byte code are
called double-byte characters.

Figure B-1 shows alphanumeric characters coded
in a single-byte code scheme and double-byte
characters coded in a double-byte code scheme.

You can use double-byte characters as well as
single-byte characters in one application. For
instance, you may want to store double-byte data
and single-byte data in your database, create your
display screens with double-byte text and fields, or
print reports with double-byte characters.

2-Byte Code

X'42C1’
X'42C2’
X 42F1’
X'42F2’
X'4481’
X’45D7° (Japanese)

X’8877 (Japanese)
X’524F (Korean)
X’4F99’ (Simplified Chinese)

X’5B70’ (Traditional Chinese)

X’hhhh’ indicates that the code has the hexadecimal value, "hhhh".

1-Byte Codes:

256 characters

2-Byte Codes: | 256 X 256 characters

Figure B-1. Single-byte and Double-byte Code Schemes

© Copyright IBM Corp. 1991, 1993

HRSLS338-0

DBCS Code Scheme

IBM supports two DBCS code schemes: one for
the host systems, the other for personal com-
puters. The IBM-host code scheme has the fol-
lowing code-range characteristics:

First byte

hex 41 to hex FE
Second byte

hex 41 to hex FE
Double-byte blank

hex 4040

In the following figure, using the first byte as the
vertical axis and the second byte as the horizontal
axis, 256 x 256 intersections or code points are
expressed. The lower-right code area is desig-
nated as the valid double-byte code area and x is
assigned to the double-byte blank.

2nd byte ———»

1st 0 44 FIF
byte 0 0|1 E|F
00
40 x'
41

FE

FF

D: double-byte code area

x double-byte blank RSLH712-3

Figure B-2. IBM-Host Code Scheme

By assigning the values hex 41 to hex FE in the
first and second bytes as the DBCS codes, the
codes can be grouped in wards with 192 code
points in each ward. For example, the code group
with the first byte starting with hex 42 is called
ward 42. Ward 42 has the same alphanumeric
characters as those in a corresponding single-byte
EBCDIC code page, but with double-byte codes.
For example, the character A is represented in

B-2 AS/400 Data Management Guide

single-byte EBCDIC code as hex C1 and in
IBM-host code as hex 42C1.

The AS/400 system supports the following double-
byte character sets:

e [BM Japanese Character Set

* IBM Korean Character Set

e |IBM Simplified Chinese Character Set
e |BM Traditional Chinese Character Set

The following tables show the code ranges for
each character set and the number of characters
supported in each character set.

Table B-1. IBM Japanese Character Set

Number of
Wards Content Characters
40 Space in 4040 1
4110 44 Non-Kaniji characters 549
¢ Greek, Russian,
Roman numeric (Ward
41)
¢ Alphanumeric and
related symbols (Ward
42)
» Katakana, Hiragana,
and special symbols
(Ward 43-44)
45 to 55 Basic Kanji characters 3226
56 to 68 Extended Kanji characters 3487
69 to 7F User-defined characters Up to 4370
80 to FE Reserved
Total number of IBM-defined characters: 7263
Table B-2. IBM Korean Character Set
Number of
Wards Content Characters
40 Space in 4040 1
41 to 46 Non-Hangeul/Hanja charac- 939
ters (Latin alphabet, Greek,
Roman, Japanese Kana,
numeric, special symbols)
47 to 4F Reserved
50 to 6C Hanja characters 5265
6D to 83 Reserved
84 to D3 Hangeul characters (Jamo 2672
included)
D4 to DD User-defined characters Up to 1880
DE to FE Reserved

Total number of IBM-defined characters: 8877

Table B-3. IBM Simplified Chinese Character Set

Number of

Wards Content Characters
40 Space in 4040 1
41 to 47 Non-Chinese characters 712

(Latin alphabet, Greek,

Russian, Japanese Kana,

numeric, special symbols)
48 to 6F Chinese characters: Level 3755 and

1 and Level 2 3008
70 to 75 Reserved
76 to 7F User-defined characters Up to 1880
80 to FE Reserved

Total number of IBM-defined characters: 7476

Table B-4. IBM Traditional Chinese Character Set

Number of

Wards Content Characters
40 Space in 4040 1
41 to 49 Non-Chinese characters 1003

(Latin alphabet, Greek,

Roman, Japanese Kana,

numeric, special symbols)
4A to 4B Reserved
4C to 68 Primary Chinese characters 5402
69 to 91 Secondary Chinese charac- 7654

ters
92 to C1 Reserved
C2to E2 User-defined characters Up to 6204
E3 to FE Reserved

Total number of IBM-defined characters: 14060

This code scheme applies to the AS/400 system,
System/36, System/38, as well as the
System/370* system. A different DBCS code
scheme, called the IBM Personal Computer DBCS
code scheme, is used on the Personal System/55.
For details of the IBM Personal Computer DBCS
code scheme, refer to IBM PS/55 publications.

Shift-Control Characters

When the IBM-host code scheme is used, the
system uses shift-control characters to identify the
beginning and end of a string of double-byte char-
acters. The shift-out (SO) character, hex OE, indi-
cates the beginning of a double-byte character
string. The shift-in (Sl) character, hex OF, indi-
cates the end of a double-byte character string.

1-Byte Data 1-Byte Data

2-Byte Data

1-Byte Data

1-Byte Data SO | 2-Byte Data Sl

Control

Character

RSLH713-1

Each shift-control character occupies the same
amount of space as one alphanumeric character.
By contrast, double-byte characters occupy the
same amount of space as two alphanumeric char-
acters.

When double-byte characters are stored in a
graphic field or a variable of graphic data type,
there is no need to use shift control characters to
surround the double-byte characters.

Invalid Double-Byte Code and
Undefined Double-Byte Code

Invalid double-byte code has a double-byte code
value that is not in the valid double-byte code
range. Figure B-2 on page B-2 shows valid
double-byte code ranges. This is in contrast to
undefined double-byte code where the double-byte
code is valid, but no graphic symbol has been
defined for the code.

Using Double-Byte Data

This section tells you where you can use double-
byte data and discusses the limitations to its use.

Where You Can Use: You can use double-
byte data in the following ways:

e As data in files:
— Data in database files.

— Data entered in input-capable and data
displayed in output-capable fields of
display files.

— Data printed in output-capable fields in
printer files.

— Data used as literals in display files and
printer files.

Appendix B. Double-Byte Character Set Support B-3

¢ As the text of messages.
* As the text of object descriptions.

* As literals and constants, and as data to be
processed by high-level language programs.

Double-byte data can be displayed only at DBCS
display stations and printed only on DBCS
printers. Double-byte data can be written onto
diskette, tape, disk, and optical storage.

Where You Cannot Use: You cannot use
double-byte data in the following ways:

e As AS/400 object names.

¢ As command names or variable names in
control language (CL) and other high-level lan-
guages.

* As displayed or printed output on alphanu-
meric work stations.

Double-Byte Character Size

When displayed or printed, double-byte characters
usually are twice as wide as single-byte charac-
ters.

Consider the width of double-byte characters
when you calculate the length of a double-byte
data field because field lengths are usually identi-
fied as the number of single-byte character posi-
tions used. For more information on calculating
the length of fields containing double-byte data,
refer to the DDS Reference.

Processing Double-Byte
Characters

Due to the large number of double-byte charac-
ters, the system needs more information to identify
each double-byte character than is needed to
identify each alphanumeric character.

There are two types of double-byte characters:
basic and extended. These characters are usually
processed by the device on which the characters
are displayed or printed.

B-4 AS/400 Data Management Guide

Basic Characters

Basic characters are frequently used double-byte
characters that reside in the hardware of a
DBCS-capable device. The number of double-
byte characters stored in the device varies with
the language supported and the storage size of
the device. A DBCS-capable device can display
or print basic characters without using the
extended character processing function of the
operating system.

Extended Characters

When processing extended characters, the device
requires the assistance of the system. The
system must tell the device what the character
looks like before the device can display or print
the character. Extended characters are stored in
a DBCS font table, not in the DBCS-capable
device. When displaying or printing extended
characters, the device receives them from the
DBCS font table under control of the operating
system.

Extended character processing is a function of the
operating system that is required to make charac-
ters stored in a DBCS font table available to a
DBCS-capable device.

To request extended character processing, specify
the double-byte extended character parameter,
IGCEXNCHR(*YES), on the file creation command
when you create a display (CRTDSPF command)
or printer file (CRTPRTF command) that pro-
cesses double-byte data. Because
IGCEXNCHR(*YES) is the default value, the
system automatically processes extended charac-
ters unless you instruct it otherwise. You can
change this file attribute by using a change file
(CHGDSPF or CHGPRTF) or override file
(OVRDSPF or OVRPRTF) command. For
example, to override the display file DBCSDSPF
so that extended characters are processed, enter:

OVRDSPF DSPF(DBCSDSPF) IGCEXNCHR(*YES)

Notes:

1. The system ignores the IGCEXNCHR param-
eter when processing alphanumeric files.

2. When you use the Japanese 5583 Printer to
print extended characters, you must use the
Kaniji print function of the Advanced DBCS

Printer Support licensed program. Refer to
the Kanji Print Function User's Guide and Ref-
erence for how to use this utility.

What Happens When Extended
Characters Are Not Processed

When extended characters are not processed, the
following happens:

» Basic double-byte characters are displayed
and printed.

¢ On displays, the system displays the unde-
fined character where it would otherwise
display extended characters.

¢ On printed output, the system prints the unde-
fined character where it would otherwise print
extended characters.

¢ The extended characters, though not dis-
played or printed, are stored correctly in the
system.

Device File Support

The following sections describe DBCS-capable
device files and special considerations for working
with DBCS-capable device files. Data description
specifications (DDS), a language used to describe
files, can be used with DBCS-capable device files.
For information about using DDS, refer to the DDS
Reference manual.

What a DBCS File Is

A DBCS file is a file that contains double-byte
data or is used to process double-byte data.
Other files are called alphanumeric files.

The following types of device files can be DBCS
files:

« Display
¢ Printer
e Tape

e Diskette
e ICF

When to Indicate a DBCS File

You should indicate that a file is DBCS in one or
more of the following situations:

¢ The file receives input, or displays or prints
output, which has double-byte characters.

* The file contains double-byte literals.

» The file has double-byte literals in the DDS
that are used in the file at processing time
(such as constant fields and error messages).

¢ The DDS of the file includes DBCS keywords.
See the DDS Reference for information on
these keywords.

¢ The file stores double-byte data (database
files).

How to Indicate a DBCS File

You must indicate that a device file is a DBCS file
in order for the system to process double-byte
data properly. You can do this in one of the fol-
lowing ways:

e Through DDS

— DDS provides fields of the following data
types.

- DBCS-only fields: display and
accept only double-byte characters.
Double-byte characters in a
DBCS-only field are enclosed in
shift-out and shift-in characters that
have to be paired.

- DBCS-open fields: display and
accept both single-byte and double-
byte characters. Double-byte charac-
ters are enclosed in shift-out and
shift-in characters that have to be
paired.

- DBCS-either fields: display and
accept either single-byte or double-
byte characters, but not both. Double-
byte characters are enclosed in
shift-out and shift-in character pairs.

- DBCS-graphic fields: display and
accept only double-byte characters.
Characters in a DBCS-graphic field do
not have shift-out and shift-in charac-
ters. The AS/400 DBCS-graphic field
is equivalent to a System/370 DBCS
field.

Appendix B. Double-Byte Character Set Support B-5

[

In ICF files, by defining fields with
DBCS-open data type (type O).

In printer files, by defining fields with
DBCS-open data type (type O) and
DBCS-graphic data type (type G).

In display files, by defining fields with
DBCS-only data type (type J),
DBCS-either data type (type E),
DBCS-open data type (type O), or
DBCS-graphic data type (type G).

By using a double-byte literal that is used
with the file at processing time, such as
literals specified with the Default (DFT)
and Error Message (ERRMSG) DDS
keywords.

Note: You may also use double-byte
literals as text and comments in a file,
such as with the DDS keyword TEXT.
However, the system does not consider a
file, whose only DBCS usage is that it has
double-byte comments, to be a DBCS file.

By specifying the Alternative Data Type
(IGCALTTYP) DDS keyword in display
and printer files. This keyword lets you
use display and printer files with both
alphanumeric and double-byte applica-
tions. When you put the IGCALTTYP
keyword into effect, you can use double-
byte data with the file.

Put the IGCALTTYP keyword into effect
by creating, changing, or overriding
display and printer files with the
IGCDTA(*YES) value. You can put the
IGCALTTYP keyword into effect for
display and printer files by specifying
IGCDTA(*YES) on the following device file
commands:

- Create Display File (CRTDSPF)

- Create Printer File (CRTPRTF)

- Change Display File (CHGDSPF)

- Change Printer File (CHGPRTF)

- Override with Display File (OVRDSPF)
- Override with Printer File (OVRPRTF)

When you specify IGCDTA(*NO), the
IGCALTTYP keyword is not in effect and
you can use only alphanumeric data with
the file. Changing or overriding the file to
put the IGCALTTYP keyword into effect
does not change the DDS of the file.

B-6 AS/400 Data Management Guide

Except when using the IGCALTTYP func-
tion, you do not need to specify
IGCDTA(*YES) on the file creation
command if you have already specified
DBCS functions in the DDS. Instead,
specify IGCDTA(*YES) when the file has
DBCS functions that are not indicated in
the DDS. For example, specify
IGCDTA(*YES) on the file creation
command if the file is intended to contain
double-byte data.

* By specifying IGCDTA(*YES) on the following

device file creation commands:

Create Diskette File (CRTDKTF)
Create Display File (CRTDSPF)
Create Printer File (CRTPRTF)
Create Tape File (CRTTAPF)

» By specifying IGCDTA(*YES) on the following

database file creation commands:

— Create Physical File (CRTPF)
— Create Source Physical File (CRTSRCPF)

Improperly Indicated DBCS Files

hy indinata thot o fila |
Openy inGiCaie nat a e is a

DBCS file, one of the following happens:

* For printer files, printer data management

assumes the output data to the printer does
not contain double-byte data. The end result
depends on the type of printer the data is
printed on and the status of the replace
unprintable character parameter for the printer
file you are using.

If the replace-unprintable-character option is
selected, printer data management interprets
shift-control characters as unprintable charac-
ters and replaces them with blanks. The
double-byte data itself is interpreted as alpha-
numeric data, and the printer attempts to print
it as such. The printed double-byte data does
not make sense.

If the replace-unprintable-character option is
not selected and the printer is an alphanu-
meric printer, the double-byte data, including
the control characters, is sent as is to the
printer. On most alphanumeric printers, the
shift-control characters are not supported, and
an error will occur at the printer.

If the replace-unprintable-character option is
not selected and the printer is a DBCS printer,

the double-byte data is printed with the excep-
tion of extended characters. Because the file
was not indicated as a DBCS file, the system
will not perform extended character pro-
cessing. The extended characters are printed
with the symbol for undefined double-byte
characters.

» For display files, display data management
assumes that the output data to the display
does not contain double-byte data. The end
result depends on whether the display is an
alphanumeric or DBCS display.

If the display is an alphanumeric display, the
double-byte data is interpreted as alphanu-
meric data. The shift-control characters
appear as blanks. The displayed double-byte
data does not make sense.

If the display is a DBCS display, the double-
byte data is displayed with the exception of
extended characters. The system does not
perform extended character processing on the
data. Therefore, extended characters are dis-
played with the symbol for undefined double-
byte characters.

¢ The system does not recognize literals with
DBCS text as double-byte literals if the source
file is not specified as a DBCS file.

Making Printer Files Capable of

DBCS: In many cases, printer files are used by
the system to produce data that will eventually be
printed or displayed. In these cases, the data is
first placed into a spooled file using one of the
IBM-supplied printer files. The data is then taken
from the spooled file and is displayed or printed
based on the request of the user.

When the data involved contains double-byte
characters, the printer file that is used to place the
data into the spooled file must be capable of pro-
cessing double-byte data. A printer file is capable
of processing double-byte data when *YES is
specified on the IGCDTA parameter for the file. In
most cases, the system recognizes the occurrence
of double-byte data and takes appropriate meas-
ures to ensure the printer file that is used is
capable of processing double-byte data.

In some cases, however, the system cannot rec-
ognize the occurrence of double-byte data and
may attempt to use a printer file that is not
capable of processing double-byte data. If this

occurs, the output at the display or printer may not
be readable. This can happen when object
descriptions containing double-byte characters are
to be displayed or printed on an alphanumeric
device.

To ensure that you receive correct results when
you display or print double-byte characters, some
recommendations should be followed. Action is
required on your part if you have a single-byte
national language installed as a secondary lan-
guage. Printer files that are received as part of
the DBCS version of a product are always capable
of processing DBCS data.

The following recommended actions should be
performed after the product or feature has been
installed:

1. If all printers and display devices attached to
your system are DBCS-capable, you can
enable all printer files for double-byte data.
For IBM-supplied printer files that are received
as part of a single-byte secondary language
feature, you can enable all printer files by
issuing the following command:

CHGPRTF FILE(*ALL/*ALL) IGCDTA(*YES)

After this command has been completed, all
printer files in all libraries will be enabled for
double-byte data. The change will be a per-
manent change.

2. If all printer and display devices attached to
your system are not DBCS-capable, it is
recommended that you do not enable all
IBM-supplied printer files.

Instead, use the library search capabilities of
the system to control which printer files will be
used for any particular job. When the poten-
tial exists that double-byte data will be
encountered, the library list for the job should
be such that the printer files that are
DBCS-enabled will be found first in the library
list. Conversely, if only single-byte data is
expected to be encountered, the library list
should be set up so the printer files that are
not enabled for DBCS will be found first. In
this way, the printer file capabilities will match
the type of data that will be processed. The
decision as to what type of printer file to use
is made on the basis of what type of data will
be processed. The device that will be used to
actually display or print the data may also
influence this decision.

Appendix B. Double-Byte Character Set Support B-7

In some cases it may be desirable to make
the printer file only temporarily DBCS-capable
instead of making a permanent change. For a
specific job, you can make this temporary
change by using the OVRPRTF command.

To temporarily enable a specific printer file,
you can use the following command:

OVRPRTF FILE(filename) IGCDTA(*YES)

Where filename is the name of the printer file
you want to enable.

Display Support

The following sections describe information on dis-
playing double-byte characters.

Inserting Shift-Control Characters

The system inserts shift-control characters into
DBCS-only fields automatically.

To insert shift-control characters into open fields
or either fields, do the following:

1. Position the cursor in the field in which you
want to insert double-byte data.

2. Press the Insert Shift Control Character key
(according to your DBCS display station user's
guide).

The system inserts a pair of shift-control charac-
ters at the same time, as follows (where O repre-
sents the shift-out character and O represents the
shift-in character):

00¢

The system leaves the cursor under the shift-in
character and puts the keyboard in insert mode.
Insert double-byte characters between the shift-
control characters. To insert double-byte charac-
ters, start keying in double-byte characters at the
cursor position. For example, enter the double-
byte character string D1D2D3, as follows (where
Og represents the shift-out character, O repre-
sents the shift-in character, and D1, D2, and D3
represent three double-byte characters):

02D1D2D30

B-8 AS/400 Data Management Guide

To find out if a field already has the shift-control
characters, press the Display Shift Control Char-
acter key.

DBCS-graphic fields store double-byte characters
without requiring the use of shift control charac-
ters. Shift control characters should not be
inserted in graphic fields.

Number of Displayed Extended
Characters

The system can display up to 512 different
extended characters on a Japanese display at one
time. Additional extended characters are dis-
played as undefined characters. However, the
additional extended characters are stored correctly
in the system.

Number of Input Fields on a
Display

The use of DBCS input fields affects the total
number of input fields allowed on a display. For a
local 5250 display station, you can specify as
many as 256 input fields. However, each three
instances of a DBCS field reduces the maximum
number of fields by one. For example, if there
are 9 DBCS fields on a display, then the
maximum is 256 - (9/3) = 253 input fields.

Effects of Displaying Double-Byte
Data at Alphanumeric Work
Stations

Alphanumeric display stations cannot display
double-byte data correctly. If you try to display
double-byte data at an alphanumeric display
station, the following happens:

e The system sends an inquiry message to that
display station, asking whether you want to
continue using the program with double-byte
data or to cancel it.

* If you continue using the program, the system
ignores the shift-control characters and inter-
prets the double-byte characters as though
they were single-byte characters. Displayed
double-byte data does not make sense.

Copying Files

You can copy both spooled and nonspooled
DBCS files.

Copying Spooled Files

Copy spooled files that have double-byte data by
using the Copy Spooled File (CPYSPLF)
command. However, the database file to which
the file is being copied must have been created
with the IGCDTA(*YES) value specified.

When copying spooled files to a database file that
contains double-byte data, an extra column is
reserved for the shift-out character. This shift-out
character is placed between the control informa-
tion for the record and the user data. The fol-
lowing table shows the shift-out character column
number, based on the value specified for the
Control Character (CTLCHAR) keyword:

Column for

CTLCHAR Value Shift-Out Character

*NONE
*FCFC
*PRTCTL
*S36FMT

o =

Copying Nonspooled Files

You can use the Copy File (CPYF) command to
copy double-byte data from one file to another.

When copying data from a double-byte database
file to an alphanumeric database file, specify one
of the following on the CPYF command:

 If both files are source files or if both files are
database files, you can specify either the
FMTOPT(*MAP) parameter or the
FMTOPT(*NOCHK) parameter.

¢ [f one file is a source file and the other file is a
database file, specify the FMT(*CVTSRC)
parameter.

When you copy DBCS files to alphanumeric files,
the system sends you an informational message
describing the difference in file types.

Either the FMTOPT(*MAP) or FMTOPT(*NOCHK)
option of the copy file function must be specified
for copies from a physical or logical file to a phys-
ical file when there are fields with the same name
in the from-file and to-file, but the data type for
fields is as shown in the following table.

From-File Field Data
Type To-File Field Data Type

J (DBCS-only)

J (DBCS-only)

E (DBCS-either)
J (DBCS-only)

G (DBCS-graphic)
G (DBCS-graphic)
G (DBCS-graphic)
J (DBCS-only)

O (DBCS-open)

E (DBCS-either)

A (character)

O (DBCS-open)
O (DBCS-open)

E (DBCS-either)

J (DBCS-only)

O (DBCS-open)

E (DBCS-either)
G (DBCS-graphic)
G (DBCS-graphic)
G (DBCS-graphic)

When you use FMTOPT(*MAP) on the CPYF
command to copy data to a DBCS-only field or
DBCS-graphic field, the corresponding field in the
from-file must not be:

« Less than a 2-byte character field
» An odd-byte-length character field
* An odd-byte-length DBCS-open field

If you attempt to copy with one of these specified
in the from-field, an error message is sent.

When you copy double-byte data from one data-
base file to another with the FMTOPT(*MAP)
parameter specified, double-byte data will be
copied correctly. The system will perform correct
padding and truncation of double-byte data to
ensure data integrity.

When using the CPYF command with
FMTOPT(*MAP) to copy a DBCS-open field to a
graphic field, a conversion error occurs if the
DBCS-open field contains any SBCS data
(including blanks). For more information see
“DBCS-Graphic Fields” on page 4-33.

Application Program
Considerations

The following sections describe considerations for
writing applications that process double-byte data.

Appendix B. Double-Byte Character Set Support B-9

Designing Application Programs
That Process Double-Byte Data

Design your application programs for processing
double-byte data in the same way you design
application programs for processing alphanumeric
data, with the following additional considerations:

* |dentify double-byte data used in the database
files.

* Design display and printer formats that can be
used with double-byte data.

* If needed, provide DBCS conversion as a
means of entering double-byte data for inter-
active applications. Use the DDS keyword for
DBCS conversion (IGCCNV) to specify DBCS
conversion in display files. Because DBCS
work stations provide a variety of double-byte
data entry methods, you are not required to
use the AS/400 DBCS conversion function to
enter double-byte data.

» Create double-byte messages to be used by
the program.

» Specify extended character processing so that
the system prints and displays all double-byte
data. See “Extended Characters” on
page B-4 for instructions.

* Determine whether additional double-byte
characters need to be defined. User-defined
characters can be defined and maintained
using the character generator utility (CGU).
Information on CGU can be found in the CGU
User’s Guide.

When you write application programs to process
double-byte data, make sure that the double-byte
data is always processed in a double-byte unit
and do not split a double-byte character.

Changing Alphanumeric
Application Programs to DBCS
Application Programs

If an alphanumeric application program uses
externally described files, you can change that
application program to a DBCS application
program by changing the externally described
files. To convert an application program, do the
following:

B-10 AS/400 Data Management Guide

1. Create a duplicate copy of the source state-
ments for the alphanumeric file that you want
to change.

2. Change alphanumeric constants and literals to
double-byte constants and literals.

3. Change fields in the file to the open (O) data
type or specify the Alternative Data Type
(IGCALTTYP) DDS keyword so that you can
enter both double-byte and alphanumeric data
in these fields. You may want to change the
length of the fields as the double-byte data
takes more space.

4. Store the converted file in a separate library.
Give the file the same name as its alphanu-
metric version.

5. When you want to use the changed file in a
job, change the library list, using the Change
Library List (CHGLIBL) command, for the job
in which the file will be used. The library in
which the DBCS display file is stored is then
checked before the library in which the alpha-
numeric version of the file is stored.

DBCS Font Tables

DBCS font tables contain the images of the
double-byte extended characters used on the
system. The system uses these images to display
and print extended characters.

The following DBCS font tables are objects that
you can save or restore. These font tables are
distributed with the DBCS national language ver-
sions of the 0S/400 licensed program:

QIGC2424
A Japanese DBCS font table used to display
and print extended characters in a 24-by-24
dot matrix image. The system uses the table
with Japanese display stations, printers
attached to display stations, 5227 Model 1
Printer, and the 5327 Model 1 Printer.

QIGC2424C
A Traditional Chinese DBCS font table used to
print extended characters in a 24-by-24 dot
matrix image. The system uses the table with
the 5227 Model 3 Printer and the 5327 Model
3 Printer.

QIGC2424K
A Korean DBCS font table used to print
extended characters in a 24-by-24 dot matrix
image. The system uses the table with the
5227 Model 2 Printer and the 5327 Model 2
Printer.

QIGC2424S
A Simplified Chinese DBCS font table used to
print extended characters in a 24-by-24 dot
matrix image. The system uses the table with
the 5227 Model 5 Printer.

QIGC3232
A Japanese DBCS font table used to print
characters in a 32-by-32 dot matrix image.
The system uses the table with the 5583
Printer and the 5337 Model 1 Printer.

QIGC3232S
A Simplified Chinese DBCS font table used to
print characters in a 32-by-32 dot matrix
image. The system uses the table with the
5337 Model R05 Printer.

All DBCS font tables have an object type of
*ICGTBL. You can find instructions for adding
user-defined characters to DBCS font tables in the
CGU User’s Guide.

Commands for DBCS Font Tables

The following commands allow you to manage
and use DBCS font tables:

¢ Check DBCS Font Table (CHKIGCTBL)

e Copy DBCS Font Table (CPYIGCTBL)

e Delete DBCS Font Table (DLTIGCTBL)

e Start Character Generator Utility (STRCGU)
e Start Font Management Aid (STRFMA)

Finding Out if a DBCS Font Table
Exists

Use the Check DBCS Font Table (CHKIGCTBL)
command to find out if a DBCS font table exists in
your system.

For example, to find out if the table QIGC2424
exists, enter:

CHKIGCTBL IGCTBL(QIGC2424)

If the table does not exist, the system responds
with a message. If the table does exist, the
system simply returns without a message.

Check for the existence of a table when adding a
new type of DBCS work station to make sure that
the table used by the device exists in the system.

Copying a DBCS Font Table onto
Tape or Diskette

Use the Copy DBCS Font Table (CPYIGCTBL)
command to copy a DBCS font table onto tape or
diskette.

The DBCS font tables are saved when you use
the Save System (SAVSYS) command so you do
not have to use the CPYIGCTBL command when
performing normal system backup.

When to Copy a Table onto Tape or

Diskette: Copy a DBCS font table onto tape or
diskette in the following instances:

» Before deleting that table.

o After new user-defined characters are added
to the tables.

e When planning to use the tables on another
system.

How to Copy a Table onto Tape or

Diskette: To copy a DBCS font table onto a
tape or diskettes, do the following:

1. Make sure that you have a tape or diskettes
initialized to the *DATA format. If necessary,
initialize the tape or diskettes by specifying the
FMT(*DATA) parameter on the Initialize
Diskette (INZDKT) command. See the Guide
to Programming for Tape and Diskette for
complete instructions on initializing tapes and
diskettes.

2. Load the initialized tape or diskette onto the
system.

3. Enter the CPYIGCTBL command as follows:
a. Choose the value OPTION(*OUT).

b. Use the DEV parameter to select the
device to which you want to copy the
table.

c. Use the SELECT and RANGE parameters
to specify which portion of the table you
want copied from the system. See the
description of the CPYIGCTBL command
in the CL Reference manual for

Appendix B. Double-Byte Character Set Support B-11

instructions on choosing SELECT and
RANGE parameter values.

The following are two examples of the
CPYIGCTBL command used to copy a DBCS
font table to removable media.

e To copy the DBCS font table QIGC2424
onto diskettes, enter:

CPYIGCTBL IGCTBL(QIGC2424) OPTION(*QUT) +
DEV (QDKT)

» To copy just the user-defined characters
from DBCS font table QIGC2424 onto
tape, enter:

CPYIGCTBL IGCTBL(QIGC2424) OPTION(*OUT) +
DEV(QTAPO1) SELECT(*USER)

4. Press the Enter key. The system copies the
DBCS font table onto the specified media.

5. Remove the tape or diskette after the system
finishes copying the table.

Copying a DBCS Font Table from
Tape or Diskette

Use the Copy DBCS Font Table (CPYIGCTBL)
command to copy a DBCS font tabie from a tape
or a diskette onto the system. The system auto-
matically creates the DBCS font table again when
copying its contents if the following are true:

* The specified table does not already exist in
the system.

* The media from which you are copying the
table contains all of the IBM-defined double-
byte characters.

e SELECT(*ALL) or SELECT(*SYS) is specified
on the CPYIGCTBL command.

How to Copy a Table from a Tape or
Diskette: To copy a DBCS font table from tape
or diskette onto the system:

1. Load the removable media from which the
table will be copied onto the system.
2. Enter the CPYIGCTBL command as follows:

a. Choose the OPTION(*IN) value.

b. Use the DEV parameter to select the
device from which to copy the DBCS font
table.

c. Use the SELECT and RANGE parameters
to specify which portion of the table will be
copied from the tape or diskette. See the

B-12 AS/400 Data Management Guide

CL Reference for a description of the
CPYIGCTBL command and for
instructions on choosing SELECT and
RANGE parameter values.

The following are two examples of commands
used to copy a DBCS font table to the system.

e To copy the DBCS font table QIGC2424
from diskette, enter:

CPYIGCTBL IGCTBL(QIGC2424) OPTION(*IN) +
DEV (QDKT)

e To copy just the user-defined characters
from DBCS font table QIGC2424 from
tape and to replace the user-defined char-
acters in the table with the ones from the
tape, enter:

CPYIGCTBL IGCTBL(QIGC2424) OPTION(*IN) +
DEV(QTAPO1) SELECT(*USER) RPLIMG(*YES)

3. Press the Enter key. The system copies the
DBCS font table from the tape or diskette onto
the system.

4. Remove the tape or diskette after the system
finishes copying the table.

Deleting a DBCS Font Table

Use the Delete DBCS Font Table (DLTIGCTBL)
command to delete a DBCS font table from the
system.

When to Delete a DBCS Font Table:

Delete an unused DBCS font table to free storage
space. For example, if you do not plan to use
Japanese printer 5583 or 5337 with your system,
font table QIGC3232 is not needed and can be
deleted.

How to Delete a DBCS Font Table:
When deleting a table, do the following:

1. If desired, copy the table onto tape or
diskettes. See “Copying a DBCS Font Table
onto Tape or Diskette” on page B-11 for
instructions. If you do not copy the table to
removable media before deleting it, you will
not have a copy of the table for future use.

2. Vary off all devices using that table.
3. Enter the DLTIGCTBL command.

For example, to delete the DBCS font table
QIGC3232, enter:

DLTIGCTBL IGCTBL(QIGC3232)

4. Press the Enter key. The system sends
inquiry message CPA8424 to the system
operator message queue for you to confirm
your intention to delete a DBCS table.

5. Respond to the inquiry message. The system
sends you a message when it has deleted the
table.

Note: Do not delete a DBCS font table if any
device using that table is currently varied on.
Also, make sure that the affected controller is not
varied on. If you try to delete the table while the
device and controller are varied on, the system
reports any devices attached to the same
controller(s) as those devices, and the controller(s)
as damaged the next time you try to print or
display extended characters on an affected
device. If such damage is reported, do the fol-
lowing:

—

. Vary off the affected devices, using the Vary
Configuration (VRYCFG) command.

. Vary off the affected controller.

. Vary on the affected controller.

. Vary on the affected devices.

. Continue normal work.

a b~ WD

Starting the Character Generator
Utility

Use the STRCGU command to start the character
generator utility. You may call the CGU main
menu or specify a specific CGU function,
depending on the parameter used. Refer to the
CGU User’s Guide for more information.

Copying User-Defined
Double-Byte Characters

Use the STRFMA command to copy user-defined
double-byte characters between an AS/400 DBCS
font table and a user font file at a Personal
System/55, a 5295 Display Station, or an
InfoWindow* 3477 Display Station. Refer to the
Font Management Aid User's Guide on how to
use this command.

DBCS Font Files

In addition to the system-supplied DBCS font
tables, the system also provides DBCS font files.
These DBCS font files are physical files which
contain frequently used double-byte characters.
When using the character generator utility, you
can use the characters in these files as the base
for a new user-defined character. These files are
supplied with read-only authority as they are not to
be changed. If you do not use character gener-
ator utility or the Advanced DBCS Printer Support
licensed program, you may delete these files to
save space. They all exist in the QSYS library.

The following DBCS font files are distributed with
the DBCS national language versions of the
0S/400 licensed program. They are used as a
reference for the CGU and the AS/400 Advanced
DBCS Printer Support licensed program.

QCGF2424
A Japanese DBCS font file used to store a
copy of the Japanese DBCS basic character
images.

QCGF2424K

A Korean DBCS font file used to store a copy
of the Korean DBCS basic character images.

QCGF2424C
A Traditional Chinese DBCS font file used to
store a copy of the Traditional Chinese DBCS
basic character images.

QCGF2424S
A Simplified Chinese DBCS font file used to
store a copy of the Simplified Chinese DBCS
basic character images.

DBCS Sort Tables

DBCS sort tables contain the sort information and
collating sequences of all the double-byte charac-
ters used on the system. The system uses these
tables to sort double-byte characters using the
sort utility.

DBCS sort tables are objects that you can save,
restore and delete. Using the character generator
utility you can also add, delete and change entries
in these tables corresponding to the image entries
in the DBCS font tables. For Japanese use only,

Appendix B. Double-Byte Character Set Support B-13

you can also copy the DBCS master sort table to
and from a data file.

The following DBCS sort tables are distributed
with the DBCS national language versions of
0S/400 licensed program:

QCGMSTR
A Japanese DBCS master sort table used to
store the sort information for the Japanese
double-byte character set.

QCGACTV
A Japanese DBCS active sort table used to
store the sort collating sequences for the
Japanese double-byte character set.

QCGMSTRC
A Traditional Chinese DBCS master sort table
used to store the sort information for the Tradi-
tional Chinese double-byte character set.

QCGACTVC
A Traditional Chinese DBCS active sort table
used to store the sort collating sequences for
the Traditional Chinese double-byte character
set.

QCGACTVK
A Korean DBCS active sort tabie used to map
Hanja characters to Hangeul characters with
equivalent pronunciation.

QCGMSTRS
A Simplified Chinese DBCS master sort table
used to store the sort information for the Sim-
plified Chinese double-byte character set.

QCGACTVS
A Simplified Chinese DBCS active sort table
used to store the sort collating sequences for
the Simplified Chinese double-byte character
set.

You may sort Japanese, Korean, Simplified
Chinese, and Traditional Chinese double-byte
characters. Each of these languages have two
DBCS sort tables, a DBCS master sort table and
a DBCS active sort table, except for Korean which
has only a DBCS active sort table. The DBCS
master sort table contains sort information for all
defined DBCS characters. The DBCS active sort
table for Japanese, Simplified Chinese, and Tradi-
tional Chinese is created from the master sort
table information and contains the collating
sequences for the double-byte characters of that
given language. These collating sequences have
a purpose similar to the EBCDIC and ASCII col-

B-14 AS/400 Data Management Guide

lating sequences for the single-byte alphanumeric
character set. For Korean characters, the
Hangeul characters are assigned both their col-
lating sequence as well as their DBCS codes
according to their pronunciation. Hence, a sepa-
rate collating sequence is not required, and each
of the Hanja characters is mapped to a Hangeul
character of the same pronunciation using the
DBCS active sort table QCGACTVK. Refer to the
Sort User’s Guide and Reference for more infor-
mation.

All DBCS sort tables have an object type of
*IGCSRT.

Commands for DBCS Sort Tables

The following commands allow you to manage
and use DBCS sort tables.

* Check Object (CHKOBUJ)

* Save Object (SAVOBJ)

* Restore Object (RSTOBJ)

* Copy DBCS Sort Table (CPYIGCSRT) (for
Japanese table only)

¢ Delete DBCS Sort Table (DLTIGCSRT)

 Start Character Generator Utility (STRCGU)
(information on CGU can be found in the CGU
User’s Guide)

Using DBCS Sort Tables on the
System

You can save the tables to tape or diskette, delete
them from the system, and restore them to the
system. The Japanese DBCS master sort table
can also be copied to a data file and copied from
a data file so that it can be shared with a
System/36 or Application System/Entry* (AS/Entry)
system. You can also add sort information for
each user-defined character, and add that char-
acter to the DBCS collating sequence, as you
create it using the character generator utility.

Finding Out if a DBCS Sort Table
Exists

Use the Check Object (CHKOBJ) command to find
out if a DBCS sort table exists in your system.

For example, to find out if the table QCGMSTR
exists, enter:

CHKOBJ OBJ(QSYS/QCGMSTR) OBJTYPE (*IGCSRT)

If the table does not exist, the system responds
with a message. [f the table does exist, the
system simply returns without a message.

Check for the existence of a DBCS active sort
table when you want to sort double-byte charac-
ters for the first time. The DBCS active table for
the DBCS language must exist to sort the charac-
ters.

Saving a DBCS Sort Table onto
Tape or Diskette

Use the Save Object (SAVOBJ) command to save
a DBCS sort table onto tape or diskette. Specify
*IGCSRT for the object type.

The DBCS sort tables are saved when you use
the SAVSYS command so you do not have to use
the SAVOBJ command when performing normal
system backup.

When to Save a DBCS Sort Table onto

Tape or Diskette: Save a DBCS sort table
onto tape or diskette in the following instances:

» Before deleting that table

¢ After information is added, updated, or
changed in the tables using the character gen-
erator utility

e When planning to use the tables on another
AS/400 system

Restoring a DBCS Sort Table
from Tape or Diskette

Use the RSTOBJ command to restore a DBCS
sort table from a tape or a diskette onto the
system. The tables on the tape or diskette must
previously have been saved using the SAVOBJ
command. Specify *IGCSRT for the object type.
The system automatically re-creates the DBCS
sort table when the specified table does not
already exist in the system.

These tables must be restored to the QSYS library
for the system to know they exist. For that
reason, RSTOBJ restores *IGCSRT objects only
to the QSYS library and only if the objects do not
already exist there.

Copying a Japanese DBCS
Master Sort Table to a Data File

Through the character generator utility, use the
CPYIGCSRT command to copy the Japanese
DBCS master sort table (QCGMSTR) to a data
file. This data file can then be moved to a
System/36 system or AS/Entry system to replace
the Japanese master sort table there.

When to Copy the Japanese DBCS

Master Sort Table to a Data File: Copy
the Japanese DBCS master sort table to a data
file in the following instances:

» When planning to move the table to the
System/36 or AS/Entry for use there. You
should always transport the Japanese DBCS
master sort table together with the Japanese
DBCS font tables.

» Before deleting that table, as an alternative to
the SAVOBJ command. You can then keep
the file or save it on diskette or tape.

How to Copy the Japanese DBCS
Master Sort Table to a Data File:

Note: In this section, the AS/Entry system also
applies to every instance of System/36.

To copy the Japanese DBCS master sort table to
a data file, do the following.

1. Decide what data file you want to copy it to.
The file need not exist, it will be automatically
created.

2. Enter the CPYIGCSRT command as follows:
a. Choose the value OPTION(*OUT).

b. Use the FILE parameter to specify the
name of the data file to which you want to
copy the master table. If you are trans-
porting the master table to the System/36
for use there, you should specify a file
name of #KAMAST, or you will have to
rename the file when you get it to the
System/36. Use the AS/400 CPYF
command for copying the file onto
diskette, and the System/36 TRANSFER
command for copying the file from diskette
to the System/36.

¢. Use the MBR parameter to specify the
name of the data file member to which

Appendix B. Double-Byte Character Set Support B-15

you want to copy the master table. If you
are transporting the master table to the
System/36 for use there, you should
specify *FILE for the MBR parameter.

3. Press the Enter key. The system creates the
file and member if they do not exist, and over-
writes the existing member if they do exist.

4. If you now transport this file to your System/36
to replace the #KAMAST file there, you should
also use the SRTXBLD procedure to update
the active table to reflect the new master
table.

Copying a Japanese DBCS
Master Sort Table from a Data
File

Use the CPYIGCSRT command to copy the
Japanese DBCS master sort table (QCGMSTR)
from a data file.

When to Copy the Japanese DBCS
Master Sort Table from a Data File:

You may use the System/36 Migration Aid to
migrate the System/36 or AS/Entry master sort file
(#KAMAST) to the AS/400 system. When you
migrate the #KAMAST file using the System/36
Migration Aid, you do not have to use the
CPYIGCSRT command.

Copy the Japanese DBCS master sort table from
a data file in the following instances:

* When you do not use the System/36 Migration
Aid, you may copy the #KAMAST file from the
System/36 or AS/Entry to the AS/400 system.
Then use the CPYIGCSRT command to copy
sort information from the #KAMAST file to the
AS/400 master sort table (QCGMSTR).

Delete the #KAMAST file from the AS/400
system after you complete the copy operation.

* When you have copied a version of the
master table to a data file and you now want
to restore that version.

You should always migrate or copy the

Japanese DBCS master sort table together
with the Japanese DBCS font tables.

B-16 AS/400 Data Management Guide

How to Copy the Japanese DBCS

Master Sort Table from a Data File: To
copy the Japanese DBCS master sort table from a
data file, do the following:

1. Enter the CPYIGCSRT command as follows:
a. Choose the value OPTION(*IN).

b. Use the FILE parameter to specify the
name of the data file that contains a
migrated System/36 or AS/Entry master
file or an AS/400 master table previously
copied to the file using OPTION(*OUT)
with the CPYIGCSRT command. To
migrate your System/36 or AS/Entry
master file without using the System/36
Migration Aid, use the TRANSFER
command with the IFORMAT parameter
on the System/36 or AS/Entry to save the
#KAMAST master file on diskette. Use
the AS/400 Copy Fiie (CPYF) command to
copy the master file #KAMAST from
diskette. Use the CPYIGCSRT command
as described here to copy data from the
file to the AS/400 Japanese DBCS master
sort table.

c. Use the MBR parameter to specify the
name of the data file member from which
you want to copy the master table data.

2. Press the Enter key. Even though the infor-
mation in the existing Japanese DBCS master
sort table is overridden, that table must exist
before you can use this command.

3. To update the Japanese DBCS active table to
reflect the new copied information, use the
SRTXBLD procedure in the System/36 or
AS/Entry environment, or the STRCGU
command specifying OPTION(5). This must
be done before you can use the sort utility to
sort Japanese double-byte characters.

Deleting a DBCS Sort Table

Use the DLTIGCSRT command to delete a DBCS
sort table from the system.

When to Delete a DBCS Sort Table:

Delete an unused DBCS sort table to free disk
space, but you should always first save a copy of
the table using the SAVOBJ command. You
should delete the DBCS master sort table for a
DBCS language if any of the following are true:

1. You will not be creating any new characters
for that language using the character gener-
ator utility.

2. You will not be using the sort utility to sort
characters for that language.

You should delete the DBCS active sort table for a
DBCS language if you will not be using the sort
utility to sort characters for that language. The
DBCS active sort table must be on the system to
use the sort utility for this language.

How to Delete a DBCS Sort Table:
When deleting a table, do the following:

1. If desired, save the table onto tape or
diskettes. See “Saving a DBCS Sort Table
onto Tape or Diskette” on page B-15 for
instructions. If you do not save the table onto
removable media before deleting it, you will
not have a copy of the table for future use.

2. Enter the DLTIGCSRT command.

For example, to delete the DBCS sort table
QCGACTV, enter:

DLTIGCSRT IGCSRT(QCGACTV)

3. Press the Enter key. The system sends you a
message when it has deleted the table.

DBCS Conversion Dictionaries

The DBCS conversion dictionary is a collection of
alphanumeric entries and their related DBCS
words. The system refers to the dictionary when
performing DBCS conversion. See “How DBCS
Conversion Works” on page B-24 for information
on how the system uses the DBCS conversion
dictionary during DBCS conversion.

All DBCS conversion dictionaries have an object
type of *IGCDCT. A system-supplied and a user-
created dictionary are used with DBCS conver-
sion.

System-Supplied Dictionary (for
Japanese Use Only)

QSYSIGCDCT, the system-supplied dictionary that
is stored in the library, QSYS, is a collection of
entries with a Japanese pronunciation expressed
in alphanumeric characters and the DBCS words
related to those entries. The system checks this
dictionary second when performing DBCS conver-
sion.

QSYSIGCDCT contains these entries:
¢ Personal names

— Family names
— First names

e Organization names

— Private enterprises registered in the secu-
rity market

— Public corporations

— Typical organizations in the central and
local governments

— Most universities and colleges

¢ Addresses

— Public administration units within the
prefectures
— Towns and streets in 11 major cities

+ Business terms, such as department names
and position titles commonly used in enter-
prises

* Individual double-byte characters, including
basic double-byte characters, as defined by
IBM

You cannot add or delete entries from this dic-
tionary. However, you may rearrange the related
DBCS words so that the words used most fre-
quently are displayed first during DBCS conver-
sion. See “Editing a DBCS Conversion Dictionary”
on page B-19 for instructions on rearranging
terms.

User-Created Dictionary

A user-created dictionary contains any alphanu-
meric entries and related DBCS words that you

choose to include. You might create a user dic-
tionary to contain words unique to your business
or words that you use regularly but that are not

included in the system-supplied dictionary.

Appendix B. Double-Byte Character Set Support B-17

You can create one or more DBCS conversion
dictionaries with any name and store them in any
library. When performing DBCS conversion,
however, the system only refers to the first user
dictionary named QUSRIGCDCT in the user’s
library list, no matter how many dictionaries you

have or what they are named. Make sure that the

library list is properly specified so that the system
checks the correct dictionary.

During DBCS conversion, the system checks
QUSRIGCDCT before checking QSYSIGCDCT.

Commands for DBCS Conversion
Dictionaries

You can use the following commands to perform
object management functions with the DBCS con-
version dictionary. Specify the
OBJTYPE(*IGCDCT) parameter when entering
these commands:

e CHGOBJOWN: Change the owner of a
DBCS conversion dictionary

¢ CHKOBJ: Check a DBCS conversion dic-
tionary

* CRTDUPOBUJ: Create a duplicate object of
the dictionary

e DMPOBJ: Dump a DBCS conversion dic-
tionary

* DMPSYSOBJ: Dump the system-supplied
dictionary

* DSPOBJAUT: Display a user’s authority to
the dictionary

e GRTOBJAUT: Grant authority to use the dic-
tionary

« MOVOBJ: Move the dictionary to another
library

* RNMOBJ: Rename the dictionary
* RSTOBJ: Restore the dictionary

* RVKOBJAUT: Revoke authority to use the
dictionary

e SAVOBJ: Save the dictionary
* SAVCHGOBUJ: Save a changed dictionary

B-18 AS/400 Data Management Guide

The system saves or restores DBCS conversion
dictionaries when you use these commands:

e RSTLIB: Restore a library in which the dic-
tionary is stored

e SAVLIB: Save a library in which the dic-
tionary is stored

* SAVSYS: Save QSYSIGCDCT, the system
DBCS conversion dictionary, when saving the
system

You can use the following commands to create,
edit, display, and delete a dictionary:

¢ CRTIGCDCT: Create DBCS Conversion Dic-
tionary

e EDTIGCDCT: Edit DBCS Conversion Dic-
tionary

e DSPIGCDCT: Display DBCS Conversion Dic-
tionary

¢ DLTIGCDCT: Delete DBCS Conversion Dic-
tionary

Creating a DBCS Conversion Dic-

tionary: To create a DBCS conversion dic-
tionary, do the following:

1. Use the Create DBCS Conversion Dictionary
(CRTIGCDCT) command.

2. Name the dictionary, QUSRIGCDCT, so it can
be used during DBCS conversion. The
system uses the dictionary if it is the first user-
created dictionary found when searching a
user’s library list.

You might call the dictionary by another name
while it is being created to prevent application
programs from using it for conversion. Later,
change the dictionary name using the
Rename Object (RNMOBJ) command.

For example, to create a user DBCS conver-
sion dictionary to be stored in the library
DBCSLIB, enter:

CRTIGCDCT IGCDCT(DBCSLIB/QUSRIGCDCT)

3. Use the EDTIGCDCT command to put entries
and related words into the dictionary after cre-
ating it. See “Editing a DBCS Conversion
Dictionary” on page B-19 for instructions on
putting entries in the dictionary.

Editing a DBCS Conversion

Dictionary: Use the Edit DBCS Conversion
Dictionary (EDTIGCDCT) command to edit the
DBCS conversion dictionary. Use editing to add
user-defined characters to the dictionary, so that
users can enter characters using DBCS conver-
sion, and rearrange terms in a DBCS conversion
dictionary to suit individual needs.

Requirements for a DBCS Conversion Dic-
tionary: The display station needed for use while
editing the DBCS conversion dictionary depends
on the value that you entered for the ENTRY
parameter on the EDTIGCDCT command:

 If you specified a specific string with the
ENTRY parameter or if you want to display
double-byte characters, you must use a DBCS
display station.

 If you did not specify a specific string with the
ENTRY parameter, or if you do not want to
display double-byte characters, use either a
DBCS display station, or a 24-row by
80-column alphanumeric display station.

DBCS Conversion Dictionary Operations: You
may perform the following editing operations on a
user-created DBCS conversion dictionary:

e Add entries to the dictionary (including adding
the first entries to the dictionary after it is
created). The dictionary can contain as many
as 99,999 entries.

¢ Delete entries from the dictionary.

* Change entries in the dictionary, such as
replacing the DBCS words related to an
alphanumeric entry.

¢ Move the DBCS words related to an alphanu-
meric entry to rearrange the order in which
they appear during DBCS conversion.

The only editing function that you can perform with
QSYSIGCDCT, the system-supplied dictionary, is
to move DBCS words related to an alphanumeric
entry. Move words in order to rearrange the order
in which they appear during DBCS conversion.

Displays Used for Editing a DBCS Conversion
Dictionary: After you enter the EDTIGCDCT
command, the system presents either the Work
With DBCS Conversion Dictionary display or the
Edit Related Words display, depending on the
value entered for the ENTRY parameter on the
command.

Work with DBCS Conversion Dictionary Display:
Use the display in Figure B-3 on page B-20 to
work with alphanumeric entries, such as choosing
an entry to edit or deleting an entry. The system
displays the Work with DBCS Conversion Dic-

string for the ENTRY parameter of the
EDTIGCDCT command.

See the discussion of the EDTIGCDCT command
in the CL Reference manual for a complete
description of the Work with DBCS Conversion
Dictionary display.

Appendix B. Double-Byte Character Set Support B-19

\

(BFRI S DI

2+ - S QSYSIGCDCT BH : $ALL

54751 — QsYS

474, b *ALL, $8HR*x

7y s (BLUHEE) STRLTETH— LTI RE D,

1= B0 2= BB 4= HIBE 5= R 6= HIFY

OPT IHH 0PT IFH OPT IHH OPT IHH

-~ 2 _ T80 e TN _ T{HF

_ 7 _ Twvad _ 7 _ MM

_ Ty I CDEVES £1] _ Ty _ ¥

R £ | _ Tayalt - _T4m

_ Tehuyy R CVEY _ T4{Ma _ 74179

_ TehyFan 7" _ Ti¥ _ T4hy

_ T _ T4 _ Y _ Ty

_ T _ Tty _ MY _ Yy

_ 19ty _ T9b _ Ty _ T4

Bl

F3= $8T7 F5= &R Fi2= BUAL
_ J

HRSLS332-1

Figure B-3. Display for Work with DBCS Conversion Dictionary

Edit Related Words Display: Use this display to
work with the DBCS words related to an alphanu-
meric entry. The system displays the Edit Related
Words display if you enter a specific string for the
ENTRY parameter. The system also displays the
Edit Related Words display if you choose an entry
to edit from the Work with DBCS Conversion Dic-
tionary display. Figure B-4 on page B-21 is an
example of the Edit Related Words display.

See the discussion of the EDTIGCDCT command
in the CL Reference manual for a complete
description of the Edit Related Words display.

Examples of Editing Operations: The following
sections give examples of the editing operations
that you can perform using the EDTIGCDCT dis-
plays:

* Beginning to edit a dictionary

* Adding the first entries in a dictionary

¢ Deleting an entry

* Moving a related word

e Ending editing the dictionary

Beginning to Edit a Dictionary: Enter the
EDTIGCDCT command to start editing the dic-
tionary for any type of editing operation. For
example, to put the first entry in the dictionary,
enter:

EDTIGCDCT IGCDCT(DBCSLIB/QUSRIGCDCT) +
ENTRY (*ALL)

B-20 AS/400 Data Management Guide

Or, to edit the entries beginning with the string
ABC enter:

EDTIGCDCT IGCDCT(DBCSLIB/QUSRIGCDCT) +
ENTRY ('ABC*")

Adding the First Entries in a Dictionary: To
add the first entries into a dictionary, do the fol-
lowing:

1. Specify ENTRY(*ALL) when entering the
EDTIGCDCT command. For example, to edit
the dictionary QUSRIGCDCT stored in the
library DBCSLIB, enter:

EDTIGCDCT IGCDCT(DBCSLIB/QUSRIGCDCT) +
ENTRY (*ALL)

The system displays the Work with DBCS
Conversion Dictionary display.

2. Enter a 1 in the first option field in the list and
enter an alphanumeric entry to be added to
the dictionary in the entry field.

The system then displays the Edit Related
Words display showing only two lines of data:
BEGINNING OF DATA and END OF DATA.

3. Enter an | in the NBR field beside the
BEGINNING OF DATA line to insert a line.

4. Press the Enter key. The system displays a
blank line.

QSYSIGCDCT
S4770— . . QSYS

HEER) DR
‘B :

REGSEITRLT, RT+— LTS,

Figure B-4. Display for Edit Related Words

5. On the blank line, enter a DBCS word to be
related to the new alphanumeric entry.

If you enter data on the inserted line and
leave the cursor on that line, another new line
appears below when you press the Enter key.
You can enter another DBCS word on this
line, or delete it by leaving it blank, and
pressing the Enter key.

6. When you finish adding this first entry, press
F12 to get the Exit Dictionary Entry display.
Enter the Y option to save the entry and then
return to the Work With DBCS Conversion
Dictionary display. Enter option 1 again and
enter another alphanumeric entry in the entry
field to continue adding entries to the dic-
tionary, or press F3 to end editing the dic-
tionary.

Moving a Related Word: Moving the words
related to an alphanumeric entry changes the
order in which the words appear during DBCS
conversion. To move a word, do the following:

1. Display the Edit Related Words display for the
entry in which you want to move DBCS words,
either by entering a specific entry with the
EDTIGCDCT command, or by choosing an
entry to edit from the Work with DBCS Con-
version Dictionary display.

NO H#EER)
kR T — 7 DR dekkk
0001 TA :
0002 B\
0003 P
0004 &
0005 {E
0006 =
0007 &
0008 #&
0009 B
1 %
0011 ¥ g ¢
F3= #87 Fl2= BUHL Fi18= HEFXROGE T
. y
HRSLS328-2

2. When the display appears, enter an M in the
NBR field beside the DBCS word to be
moved.

3. Enter an A in the NBR field of the line after
which the word will be moved.

4. Press the Enter key. The system moves the
word on the line marked M to a position imme-
diately following the line marked with an A.

Deleting an Entry: Enter a 4 in the input field
beside the entry to be deleted as shown in
Figure B-5 on page B-22.

Ending the Editing Process: To end the editing
operation, press F3. The Exit Dictionary Entry
display is displayed, and you can choose to save
the entry or not. The system then returns you to
your basic working display, such as the Command
Entry display.

Suggestions for Editing the Dictionary: When
editing the DBCS conversion dictionary, consider
the following:

e You can use DBCS conversion with the Edit
Related Words display to enter related words
into a user-created dictionary. See “DBCS
Conversion (for Japanese Use Only)” on
page B-23 for information on this procedure.

Appendix B. Double-Byte Character Set Support B-21

" I
[2% B2 E ol b
BE.. ... QSYSIGCDCT H’H : #ALL
547351 — QSYS
AT ¥ALL, HF5k
A7 a2y (BLUHE) RTRLTEGH— ML T R AL,
1= 8 2= W% 4= BB 5= FR o 6= HIRI
OPT XH oPT IEH oPT IHH OPT IEH
_ 2 _ Te7 fay TNy _ THFa
I ¢ _ Teyad _ 77 _ MY
_ T4 _ Tevadife Ty _ s
I) | _ Tavalt M _ T
_ Tahyry _ Tayay _ T44HA _ TAR7FaY
_ TehyFan _ TeAN _ ¥ _ Tty
_ T _ o Tetd _ Y _ T
_ 19 _ Tety _ TiH _ Tty
_ Ty 4 Tyb _ TAt{y _ T4%
£
F3= #5T7 F5= M&F~ Fl2= BUHL
J
HRSLS331-2

Figure B-5. Display for Deleting a Conversion Dictionary Entry

e Place the most commonly used DBCS words
at the beginning of the list of related words on
the Edit Related Words display. This simpli-
fies DBCS conversion because the system
displays the related words in the same order

in which those words are listed in the dic-
tionary.

Displaying and Printing the DBCS
Conversion Dictionary

Use the Display DBCS Conversion Dictionary
(DSPIGCDCT) command to display and print the
DBCS conversion dictionary. You can display or
print the entire dictionary or just a certain part of it,
depending on the value you specify for the
ENTRY parameter.

For example, to print the entry ABC from the dic-
tionary QUSRIGCDCT and its related words,
enter:

DSPIGCDCT IGCDCT(DBCSLIB/QUSRIGCDCT) +
ENTRY (ABC) OUTPUT (*PRINT)

To display all of the entries from the system-
supplied dictionary QSYSIGCDCT and their
related words, enter:

DSPIGCDCT IGCDCT(QSYS/QSYSIGCDCT)

Figure B-6 on page B-23 provides an example of
the display produced by the DSPIGCDCT

B-22 AS/400 Data Management Guide

command. It shows alphanumeric entries and
their related words.

See the discussion of the DSPIGCDCT command
in the CL Reference manual for a complete
description of the command and the display it
produces.

Deleting a DBCS Conversion
Dictionary

Use the Delete DBCS Conversion Dictionary
(DLTIGCDCT) command to delete a DBCS con-
version dictionary from the system.

In order to delete the dictionary, you must have
object existence authority to the dictionary and
object operational authorities to the library in
which the dictionary is stored.

When you delete a dictionary, make sure that you
specify the correct library name. It is possible that
many users have their own dictionaries, each
named QUSRIGCDCT, stored in their libraries. If
you do not specify any library name, the system
deletes the first DBCS conversion dictionary in
your library list.

For example, to delete the DBCS conversion dic-
tionary QUSRIGCDCT in the library DBCSLIB,
enter:

DLTIGCDCT IGCDCT(DBCSLIB/QUSRIGCDCT)

4 T 0 KT A
HmE QSYSIGCDCT HE ?
5475)— . . : QsYS
 mHE S MEE
1 ? 1 » :
2+
3 =z
4 N
5 v
6 ”
T &
8 4
9 7
10 %
1l ¥
12 ®
13 Na
- ’ - B
BITT iy, ETF—2MWL TSV,
F3= ¥£7 Fl2= BUHL
\ _J

HRSLS337-2

Figure B-6. Display Produced by the DSPIGCDCT Command

DBCS Conversion (for Japanese
Use Only)

When you use DBCS display stations to enter
double-byte data, you may use the various data
entry methods supported on the display station, or
you may choose to use the AS/400 DBCS conver-
sion support. DBCS conversion lets you enter an
alphanumeric entry or DBCS code and convert the
entry or code to its related DBCS word. DBCS
conversion is intended for Japanese character
sets and its use is limited for application to other
double-byte character sets.

Specifically, DBCS conversion lets you convert the
following:

¢ A string of alphanumeric characters to a
DBCS word

* English alphanumeric characters to double-
byte alphanumeric characters

» Alphanumeric Katakana to double-byte
Hiragana and Katakana letters

* A DBCS code to its corresponding double-
byte character

e A DBCS number to its corresponding double-
byte character

Where You Can Use DBCS
Conversion

You can use DBCS conversion in the following
instances:

e When entering data into input fields of certain
SEU displays. For information about which
fields you can use with DBCS conversion,
refer to the SEU User’s Guide and Reference.

e When prompting for double-byte data using
QCMDEXEC. For instructions on this proce-
dure, see the CL Reference manual.

* When entering data into input fields of DBCS
display files in user-written applications.
Specify DBCS conversion with the DDS
keyword IGCCNV. See the DDS Reference
manual for information on this keyword.

* When editing the related words on the Edit
Related Words display, which is displayed
when editing the DBCS conversion dictionary
(EDTIGCDCT command). See “Editing a
DBCS Conversion Dictionary” on page B-19
for information on the Edit Related Words
display.

Appendix B. Double-Byte Character Set Support B-23

How DBCS Conversion Works

DBCS conversion is an interactive function
between you and the system in which you enter
an alphanumeric entry. The system displays
related DBCS words, and you choose which word
to use.

The system determines which words are related to
an alphanumeric entry by checking DBCS conver-
sion dictionaries. The system checks two DBCS
conversion dictionaries when performing DBCS
conversion. It checks the first user-created dic-
tionary named QUSRIGCDCT found when
searching a user’s library list. Then, it checks the
system-supplied dictionary, QSYSIGCDCT, stored
in the library QSYS. (QSYSIGCDCT contains only
Japanese double-byte characters.) You can
create other user dictionaries, and you can give
them names other than QUSRIGCDCT, but the
system only refers to the first user-created dic-
tionary named QUSRIGCDCT found in your library
list when performing DBCS conversion.

After checking the dictionaries, the system dis-
plays words related to the alphanumeric entry.

i+ A th A ~f
You then position the cursor under the word of

your choice, and press the Enter key. The system
enters that word where the cursor was positioned
when you began DBCS conversion.

Using DBCS Conversion

You can change the user-defined dictionary used
during DBCS conversion. Before you change the
user-defined dictionary, end your application
program or end the command that the system is
performing. Then change the dictionary that is
used by changing the library list (using the
CHGLIBL command).

You can create your own DBCS conversion dic-
tionary for DBCS conversion. The system-
supplied dictionary is a collection of entries with a
Japanese pronunciation expressed in alphanu-
meric characters and Japanese DBCS words
related to the entry. See “Creating a DBCS Con-
version Dictionary” on page B-18 for instructions
on this procedure.

If no user-created dictionary is found, the system
refers only to QSYSIGCDCT. See “DBCS Con-

B-24 As/400 Data Management Guide

version Dictionaries” on page B-17 for more infor-
mation on creating and using DBCS conversion
dictionaries.

Performing DBCS Conversion

The following procedure describes how to convert
one alphanumeric entry to its related DBCS word
using DBCS conversion. You must start DBCS
conversion separately for each field in which you
want to enter double-byte data.

Note: DBCS conversion is intended for Japanese
data entry. Its use with other languages is limited.

While performing DBCS conversion, you can
display information about the function by pressing
the Help key. Help is available until you end
DBCS conversion.

1. Position the cursor in the field in which you
want to enter double-byte characters. Insert
shift-control characters into the field if they
have not yet been inserted. To find out how
to insert shift characters, see “Inserting Shift-
Control Characters” on page B-8.

2. Position the cursor under the shift-in char-
acter, in a blank area between the shift-control
characters, or under a double-byte character.

3. Press the function key used to start DBCS
conversion.

In SEU, as well as from the Edit Related

Words display (displayed when using the
EDTIGCDCT command), press F18. The
system displays the following prompt line:

4. Enter the following values:

a. In the field marked A, enter one of the fol-

lowing:

| Inserts the converted word before
the character under which you
positioned the cursor in step 2.

R Replaces the character under

which you positioned the cursor in
step 2 with the converted word.

b. In the field marked B, enter one of the fol-
lowing:

1) A string of alphanumeric characters to
be converted. The string can have as
many as 12 characters.

2) The 4-character DBCS code of a
double-byte character.

3) The 2- to 5-digit DBCS number of a
double-byte character.

c. In the field marked C enter one of the fol-
lowing conversion codes:

No entry Converts the entry in field B
from alphanumeric to double-
byte by referring to the DBCS
conversion dictionaries.

G Converts the 2- to 5-digit
DBCS number in field B to the
character it represents.

H Converts the entry in field B to
double-byte Hiragana, upper-
case alphabetic, numeric, or
special characters.

K Converts the entry in field B to
double-byte Hiragana, lower-
case alphabetic, numeric, or
special characters.

X Converts the 4-character
DBCS code to the character it
represents.

5. Press the Enter key. The system displays the

following prompt line:

2, either by inserting the word or by replacing
another word, depending on what you entered
in field A.

9. Do one of the following:

a. Continue using DBCS conversion. Repeat
4 on page B-24 through 8 until you finish
entering data into the field.

b. End DBCS conversion by pressing the
same function key used to start conver-
sion. The system automatically ends con-
version when you reach the end of the
field.

In SEU, as well as from the Edit Related
Words display (displayed when using the
EDTIGCDCT command), press F18.

Note: Until DBCS conversion is ended,
you cannot perform any other system
function. For exampie, the F3 key cannot
be used to exit an SEU display.

Examples

Converting One Alphanumeric Entry to a
Double-Byte Entry: The following example
shows how to convert one entry and enter it into a
field.

1. Position the cursor in the field in which you
want to enter double-byte data (see
Figure B-7 on page B-26).

2. Insert shift-control characters into the field.
See “Inserting Shift-Control Characters” on
+ page B-8 for instructions on inserting shift-

. In the field marked D, the system displays
words related to the entry in field B.

If you see a plus (+) sign following the last
displayed word, the system has additional
words to display. Press the Roll Up key to
see these entries. Then, to return to a word
displayed earlier, press the Roll Down key.

If a word is shown in a reverse image, the
word contains an embedded blank.

. Choose the DBCS word from field D that best
suits your needs by positioning the cursor
under that DBCS word.

. Press the Enter key. The system enters the
word where the cursor was positioned in step

control characters.

3. Press the function key used to start DBCS
conversion. For the display just shown, the
function key is F18. The system displays a
prompt line as shown in Figure B-8 on
page B-27.

Because the cursor was placed under a
shift-in character when conversion was
started, conversion automatically is set to |
(inserting the converted word).

4. Enter an alphanumeric entry to be converted
in the second field.

Leave the third field blank. See the example
screen in Figure B-9 on page B-27.

5. Press the Enter key. The system displays
related DBCS words.

Appendix B. Double-Byte Character Set Support B-25

6. Position the cursor under the DBCS word that 7. Press the Enter key. The DBCS word is
you want to enter, if that word is not the first entered into the field as shown in Figure B-11
DBCS word shown. In the example screen on page B-28.
shown in Figure B-10 on page B-28, the first
word is the one to be entered.

Position the cursor here.

/
4 N
700" 54 % : EMPMAINT
Bt : 91/05/23 A E/E W R T LIRS . EMPMAINTE
HE®S 12002 7%;? tEl _ E

BlEh
Wy ThETHE

?ﬁg%ﬁg - THHE
WfIo—F _ WA
MR — N | AREH
By o @

F§ : T F18: 7 +EEFAHHR

- J

HRSLS321-0

Figure B-7. Example Screen 1

B-26 AS/400 Data Management Guide

Notice that shift control characters
have been inserted into the field.

" 7O 3h %+ EMPMAINT)
At : 91/05/23 AME H #W F SF B : EMPMAINTE
HBAFE : 12002 7%&; i3 R FE
BU¥iR
8115 1= iliESE
A FH
mErEy kg

Bfro— & _ BIek
HPo—F _ MEEW

A=Y Tk
F3 : 7T F18: # BT
) G
_ \ /
\ HRSLS322-0
The prompt line.
Figure B-8. Example Screen 2
K 7o) % EMPMAINT\
B+ : 91/05/23 AF HH K EfiiE : EMPMAINTE
HARES ;12002 B4 Hal e _
s
Bifxn
WEFRSG _ THhETHE
AR
MEfRE _ TEE
Bbro—-F _ B
HFa—r _ MREH
Bws __ E
F3 : T F18: 7 +HEFER
Nre— Y,
\ HRSLS323-0

Enter an alphameric entry here.

Figure B-9. Example Screen 3

Appendix B. Double-Byte Character Set Support B-27

e 7o) & EMPMAINT\
Bt : 91/05/23 A B H HRT i : EMPMAINTE
HRAES ¢ 12002 &2 WS g
)
Bi¥an
MEFE S TETH &
AFgh
HLERR S THlTA &
BAIo—F _ BLEH
Mo —F _ EREREH
ws ok
F3 . T F18: 71 5 B
lmd _ FH O%H OFE KB % H
\ \\ J
Position the cursor here. HRSLSS24-0
Figure B-10. Example Screen 4
The system enters the word into the field.
/
AT EMPMAINT\
Aft : 91/05/23 A ¥/ #H # SF i & . EMPMAINTE
HAES - %.% it Rl
7
Bixan
HERTR Tkt
AHEH
S =2a HilTk
Miro—F _ WA
Hago—F _ BB
e Eek
F$: &7 F18: 7 BT
N)

Figure B-11. Example Screen 5

Converting Many Alphanumeric Entries at One
Time: You do not have to continually start DBCS
conversion for each alphanumeric entry. Instead,
you can do the following:

B-28 AS/400 Data Management Guide

HRSLS325-0

1. Enter as many alphanumeric entries as will fit
into field B. Separate each entry by a blank.
Field B contains space for 12 alphanumeric
characters: i

These are the entries to be converted.

I XXX_YYY 772

A B C D

The system converts the entries one at a time,
in the order entered. When the system con-
verts an entry, the system displays the DBCS
words related to that entry in field D.

2. Position the cursor under the DBCS word that
you want to use.

3. Press the Enter key. Then, the system
adjusts field B; the next entry is moved to the
position farthest left of the field. The DBCS
words related to that entry are displayed in
field D.

At this time, you can enter additional alphanu-
meric entries to be converted at the end of
field B.

Converting Alphanumeric Blanks to DBCS
Blanks: You can convert alphanumeric blanks
(one position wide) to DBCS blanks (two positions
wide, the same width as double-byte characters)
using DBCS conversion.

To convert blanks, do the following:

1. Enter one or more blanks in field B.

2. Press the Enter key. The system displays in
field D the same number of DBCS blanks as
the alphanumeric blanks that you entered in
field B. The DBCS blanks are displayed in
reverse image.

3. Press the Enter key again. The system enters
the DBCS blanks into the field where you
started DBCS conversion.

Changing Alphanumeric Entries or Conversion
Code: If none of the related words shown during
conversion are suitable candidates for the alpha-
numeric entry, and you would like to try a conver-
sion again (by using a different type of conversion
or a different alphanumeric entry), do the fol-
lowing:

1. Move the cursor to field B. For example:

Move the cursor here.

|

XXXXXX

2. Do one of the following:

a. Position the cursor under the first position
of the field in which you want to enter
alphanumeric entries.

b. Enter a different alphanumeric entry.

c. Change the conversion code in field C, '
such as from H to K.

3. Press the Enter key.

4. Continue DBCS conversion.

Using DBCS Conversion to Enter Words in the
DBCS Conversion Dictionary: You can use
DBCS conversion when entering DBCS words on
the Edit Related Words display.

To start DBCS conversion, do the following:

1. Position the cursor at the position where the
DBCS word is to be entered.

2. Press F18. The system displays the conver-
sion prompt line at the bottom of the display.

Perform DBCS conversion according to the
instructions described in “Performing DBCS
Conversion” on page B-24.

Note: You must start and end DBCS conversion
separately for each line of data.

Considerations for Using DBCS Con-

version: Consider the following when per-
forming DBCS conversion:

* You can only perform DBCS conversion at a
DBCS display station, using the 5556 key-
board.

* You may use DBCS conversion to insert or
replace characters only if the line in which
double-byte characters are to be inserted has
sufficient space.

— The space available for inserting charac-
ters is equal to the number of characters

Appendix B. Double-Byte Character Set Support B-29

from the last character on the line that is
not blank to the right edge of the display.

The space available for replacing charac-
ters is equal to the number of characters
from the cursor position (including the
character marked by the cursor) to the
end of the DBCS portion of the field.

The following happens when you do not have
enough space:

B-30 As/400 Data Management Guide

— If you try to insert or replace a string of

characters where there is no space avail-
able, the system sends a message.

If you ignore the message and press the
Enter key again, the system truncates the
characters in excess of the limit from the
right side of the string to be inserted or
replaced.

Bibliography

The following AS/400 manuals contain information you
may need. The manuals are listed with their full title
and base order number. When these manuals are
referred to in this guide, the short title listed is used.

¢ Application Development Tools: Character Gener-
ator Utility User’s Guide, SC09-1170, provides the
application programmer or system programmer with
information about using the Application Develop-
ment Tools character generator utility (CGU) to
create and maintain a double-byte character set
(DBCS) on the system.

Short title: CGU User’s Guide.

» Application Development Tools: Screen Design Aid
User’s Guide and Reference, SC09-1340, provides
the application programmer, system programmer, or
data processing manager with information about
using the Application Development Tools screen
design aid (SDA) to design, create, and maintain
displays, menus, and online help information.

Short title: SDA User’s Guide and Reference.

¢ Application Development Tools: Source Entry Utility
User’s Guide and Reference, SC09-1338, provides
the application programmer or system programmer
with information about using the Application Devel-
opment Tools source entry utility (SEU) to create
and edit source members.

Short title: SEU User’s Guide and Reference.

¢ Basic Backup and Recovery Guide, SC41-0036,
provides the system programmer with information to
plan a backup and recovery strategy. Also included
are procedures to implement your backup and
recover strategy, how to add disk units to an
existing auxiliary storage pool (ASP), and how to
recover from disk unit failures.

Short title: Basic Backup and Recovery Guide.

e Advanced Backup and Recovery Guide,
SC41-8079, provides the system programmer with
information about starting checksum or mirrored
protection and recovering from disk unit failure
when these functions are in effect.

Short title: Advanced Backup and Recovery
Guide.

o Communications: Intersystem Communications
Function Programmer’s Guide, SC41-9590, provides
the application programmer with the information
needed to write application programs that use
AS/400 communications and ICF files. It also con-
tains information on data description specifications
(DDS) keywords, system-supplied formats, return
codes, file transfer support, and programming
examples.

© Copyright IBM Corp. 1991, 1993

Short title: /CF Programmer’s Guide.

Communications: Operating System/400* Commu-
nications Configuration Reference, SC41-0001, pro-
vides information for the application programmer or
system programmer about configuration commands
and defining lines, controllers, and devices.

Short title: Communications Configuration
Reference.

Data Description Specifications Reference,
SC41-9620, provides the application programmer
with detailed descriptions of the entries and
keywords needed to describe database files (both
logical and physical) and certain device files (for
displays, printers, and ICF) external to the user's
programs.

Short title: DDS Reference.

Database Guide, SC41-9659, provides the applica-
tion programmer or system programmer with a
detailed discussion of the AS/400 database organ-
ization, including information on how to create,
describe, and manipulate database files on the
system.

Short title: Database Guide.

Device Configuration Guide, SC41-8106, provides
the system operator or system administrator with
information on how to do an initial local hardware
configuration and how to change that configuration.
It also contains conceptual information for device
configuration, and planning information for device
configuration on the 9406, 9404, and 9402 System
Units.

Short title: Device Configuration Guide.

Distributed Data Management Guide, SC41-9600,
provides the application programmer or system pro-
grammer with information about remote file pro-
cessing. It describes how to define a remote file to
0S/400 distributed data management (DDM), how
to create a DDM file, which file utilities are sup-
ported through DDM, and the requirements of
0S/400 DDM as related to other systems.

Short title: DDM Guide.

Guide to Programming Application and Help
Displays, SC41-0011, provides information about
creating and maintaining screens for applications,
creating online help information, and working with
display files on the AS/400 system.

Short title: Guide to Programming Displays.

Guide to Programming for Printing, SC41-8194, pro-
vides information on how to understand and control
printing: printing elements and concepts, printer file

H-1

support, print spooling support, printer connectivity,
advanced function printing, and printing with per-
sonal computers.

Short title: Guide to Programming for Printing.

Guide to Programming for Tape and Diskette,
SC41-0012, provides information about creating and
maintaining tape device files and diskette device
files.

Short title: Guide to Programming for Tape and
Diskette.

Languages: System/36-Compatible COBOL User’s
Guide and Reference, SC09-1160, provides infor-
mation about using COBOL in the System/36 envi-
ronment on the AS/400 system. It provides
information on how to program in COBOL in the
AS/400 System/36 environment and how to use
existing System/36 COBOL programs.

Short title: System/36-Compatible COBOL User’s
Guide and Reference.

Languages: System/36-Compatible RPG Il User’s
Guide and Reference, SC09-1162, provides pro-
gramming information for the RPG Il language on
the AS/400 system for those who have a basic
understanding of data processing concepts and of
the RPG Il language. It explains how to design,
code, enter, compile, test, and run RPG Il pro-
grams.

Short title: System/36-Compatible RPG Il User’s
Guide and Reference.

Office Services Concepts and Programmer’s Guide,
SC41-9758, provides the application programmer
with information about writing applications that use
OfficeVision/400* functions. The manual includes
an overview of calendar services, directory services,
document distribution services, document library
services, security services, text search services,
word processing services, and gives information on
finding new ways to integrate applications with
OfficeVision/400.

Short title: Office Services Concepts and
Programmer’s Guide.

Programming: Concepts and Programmer’s Guide
for the System/36 Environment, SC41-9663, pro-
vides information identifying the functional and oper-
ational differences between the applications process
on the System/36 and in the System/36 environ-
ment on the AS/400 system.

Short title: Concepts and Programmer’s Guide for
the System/36 Environment.

Programming: Control Language Programmer’s
Guide, SC41-8077, provides a wide-ranging dis-
cussion of programming topics, including a general
discussion of objects and libraries, control language
(CL) programming, controlling flow and communi-

H-2 AS/400 Data Management Guide

cating between programs, working with objects in
CL programs, and creating CL programs. Other
topics include predefined and immediate messages
and message handling, defining and creating user-
defined commands and menus, and application
testing, including debug mode, breakpoints, traces,
and display functions.

Short title: CL Programmer’s Guide.

Programming: Control Language Reference,
SC41-0030, provides a description of the control
language (CL) and its commands. Each command
is defined including its syntax diagram, parameters,
default values, and keywords.

Short title: CL Reference.

Programming: Work Management Guide,
SC41-8078, provides information about how to
create and change a work management environ-
ment.

Short title: Work Management Guide.

Security Reference, SC41-8083, provides the
system programmer with information about plan-
ning, designing, and auditing security. Includes
information about security system values, user pro-
files, and resource security.

Short title: Security Reference.

Basic Security Guide, SC41-0047, provides basic
information about planning and setting up security
on the AS/400 system.

Short title: Basic Security Guide.

System Concepts, GC41-9802, provides the pro-
grammer and system user with information about
the concepts related to the overall design and use
of the AS/400 system and its operating system.
This manual includes general information about
topics such as user interface, object management,
work management, system management, data man-
agement, database, communications, environments,
OfficeVision/400, PC Support/400, and architecture.

Short title: System Concepts.

System Operations: Font Management Aid User's
Guide, SC18-2216, provides information about how
to maintain or use double-byte character set
(DBCS) user-defined characters. It also shows how
to maintain and distribute user-defined characters
and associated data entry dictionaries between the
AS/400 system and its DBCS display stations.

System Operator’s Guide, SC41-8082, provides
information about how to use the system unit
control panel and console, send and receive mes-
sages, respond to error messages, start and stop
the system, use control devices, work with program
temporary fixes (PTFs), and process and manage
jobs on the system.

Short title: Operator’'s Guide.

Systems Application Architecture* OfficeVision/400™:

Using OfficeVision/400 Word Processing,
SC41-9618, provides the office user with informa-
tion on how to use the word processing functions of
SAA OfficeVision/400, and it can be used with the
OfficeVision/400 online information.

Short title: Using OfficeVision/400* Word
Processing.

Utilities: Interactive Data Definition Utility User’s
Guide, SC41-9657, provides the administrative sec-
retary, business professional, or programmer with
detailed information on how to use OS/400 interac-

tive data definition utility (IDDU) to describe data
dictionaries, files, and records to the system.

Short title: /DDU User’s Guide.

Utilities: Kanji Print Function User's Guide and Ref-
erence, SH18-2179, provides information about
using the Kanii printer function (KPF) to create and
maintain symbols and tailored forms.

Utilities: Sort User’s Guide and Reference,
SC09-1363, provides the application programmer
with information about using the sort function for
identifying input and output files, specifying sort
options, using effective sort run time, and identifying
double-byte character set (DBCS) sort information.

Short title: Sort User’s Guide and Reference.

Bibliography H-3

H-4 AS/400 Data Management Guide

Index

A

access path 4-6
acquire operation
allocating resources 2-11
description 2-1
file types 2-2
high-level language 2-4
activation group 2-8
add authority 2-6
Add Intersystem Communications Function
Program Device Entry (ADDICFDEVE)
command 3-23, 3-25
ADDICFDEVE (Add Intersystem Communications

Function Program Device Entry) command 3-23

adding

intersystem communications function program device

entry 3-23

members to the to-file 4-15

records examples 4-10

records when copying files 4-10
ALCOBJ (Allocate Object) command 2-10
alert message 2-16
Allocate Object (ALCOBJ) command 2-10
allocating

file resources 2-10

object 2-10
allocation considerations for copying files 4-38
alphanumeric applications, converting to

DBCS B-10

alphanumeric devices B-8
alternative data type (IGCALTTYP) keyword B-6
Analyze Problem (ANZPRB) command 2-18
analyzing

problem 2-18
ANZPRB (Analyze Problem) command 2-18
application program

DBCS considerations B-9

error handling 2-15

permanent errors 2-16
applying override

See also overriding file

at same call level 3-7

from multiple call levels 3-7

when compiling program 3-11

when using high-level language application

programs 3-2

arrival sequence access path 4-6

attribute
building 3-2
merging 3-3

open data path (ODP) 3-3

© Copyright IBM Corp. 1991, 1993

attribute (continued)

overriding 3-2

session, overriding 3-23
AUT (authority) parameter

public authority 2-7
authority

add 2-6

change-file-description 2-6

close 2-6

compile-program 2-6

copying files 4-39

creating physical file for to-file 4-13

data 2-6

delete 2-6

display-file-description 2-6

file data 2-6

file object 2-6

grant 2-6

move file 2-6

object 2-6

public 2-7

read 2-6

revoke 2-6

spooled files 5-6

transfer-ownership 2-6

update 2-6
authorization

list name value 2-7

to job queues 5-11
automatic configuration output queue 5-4

B

basic character B-4
BASIC operation 2-4
batch job

ending 5-9

ending command 5-9

inline data file 5-12
Batch Job (BCHJOB) command 5-9
BCHJOB (Batch Job) command 5-9
binary field conversion 4-34
blank

converting alphanumeric to DBCS B-29
build-key function 4-18

C

C/400 operation 2-4
CALL command 3-5
call level

See also overriding file

call level (continued)
See also program device entry
applying overrides at 3-7
description 3-4
effect on override processing 3-5
multiple files 3-7
multiple program device entries 3-24
number used for file 3-6
override command 3-4
relationship with call stack 3-5
scoping override 3-4
several overrides to single file 3-6
call stack of active job 3-5
CGU (character generator utility)
copy Japanese DBCS master sort table
copy from a data file B-11
copy to a data file B-11
DBCS sort table

character field
conversions 4-34
mapping 4-34
character generator utility (CGU)
copy Japanese DBCS master sort table
copy from a data file B-16
copy to a data file B-15
DBCS sort table
copying from a data file B-16
copying to a data file B-11, B-15
starting B-11
use B-10, B-11
character, shift-control
description of B-3
inserting B-8
Check DBCS Font Table (CHKIGCTBL)
command B-11
Check Object (CHKOBJ) command B-14

copying from a data file B-11 checking
copying to a data file B-11 DBCS font table B-11
use B-11 object B-14
change CHGCMDDFT (Change Command Default)
detecting file description 2-12 command 5-4
Change Command Default (CHGCMDDFT) CHGDKTF (Change Diskette File) command 4-15
command 5-4 CHGDSPF (Change Display File) command B-6
Change Diskette File (CHGDKTF) command 4-15 CHGLIBL (Change Library List) command B-10

Change Display File (CHGDSPF) command B-6 CHGOUTQ (Change Output Queue) command 5-3
Change Library List (CHGLIBL) command B-10 CHGPRTF (Change Printer File) command B-6
Change Output Queue (CHGOUTQ) command 5-3 CHGSPLFA (Change Spooled File Attributes)
Change Printer File (CHGPRTF) command command B5-2
indicating DBCS files B-6 CHGTAPF (Change Tape File) command 4-15

Change Spooled File Attributes (CHGSPLFA) CHGWTR (Change Writer) command 5-6

command 5-2 CHKIGCTBL (Check DBCS Font Table)
Change Tape File (CHGTAPF) command 4-15 command B-11
Change Writer (CHGWTR) command 5-6 CHKOBJ (Check Object) command B-14
change-file-description authority 2-6 CL (control language)

changed object See also command, CL
saving B-18 program overrides 3-9
changing Ciear Output Queue (CLROUTQ) command 5-3
command default 5-4 clearing
description 5-2 database members 5-3
diskette file 4-15 output queue 5-3
display file B-6 close authority 2-6
library list B-10 close considerations
output queue 5-3 shared file 2-10
printer file close operation
indicating DBCS files B-6 description 2-1
spooled file attributes 5-2 file types 2-2
tape file 4-15 high-level language 2-4, 2-8
writer 5-6 sharing file 2-8
character CLROUTAQ (Clear Output Queue) command 5-3
basic B-4 COBOL/400 operation 2-4
double-byte code
how the system processes B-4 See also return code

size B-4 file status 2-15
extended B-4

X-2 AS/400 Data Management Guide

code point B-2
command default

changing 5-4

command, CL

Add Intersystem Communications Function Program
Device Entry (ADDICFDEVE) 3-23
ADDICFDEVE (Add Intersystem Communications
Function Program Device Entry) 3-23, 3-25
ALCOBJ (Allocate Object) 2-10
Allocate Object (ALCOBJ) 2-10
Analyze Problem (ANZPRB) 2-18
ANZPRB (Analyze Problem) 2-18
Batch Job (BCHJOB) 5-9
BCHJOB (Batch Job) 5-9
Change Command Default (CHGCMDDFT) 5-4
Change Diskette File (CHGDKTF) 4-15
Change Display File (CHGDSPF) B-6
Change Library List (CHGLIBL) B-10
Change Output Queue (CHGOUTQ) 5-3
Change Printer File (CHGPRTF) B-6
Change Spooled File Attributes (CHGSPLFA) 5-2
Change Tape File (CHGTAPF) 4-15
Change Writer (CHGWTR) 5-6
Check DBCS Font Table (CHKIGCTBL) B-11
Check Object (CHKOBJ) B-14
CHGCMDDFT (Change Command Default) 5-4
CHGDKTF (Change Diskette File) 4-15
CHGDSPF (Change Display File) B-6
CHGLIBL (Change Library List) B-10
CHGOUTAQ (Change Output Queue) 5-3
CHGPRTF (Change Printer File) B-6
CHGSPLFA (Change Spooled File Attributes) 5-2
description 5-2
CHGTAPF (Change Tape File) 4-15
CHGWTR (Change Writer) 5-6
CHKIGCTBL (Check DBCS Font Table) B-11
CHKOBJ (Check Object) B-14
Clear Output Queue (CLROUTQ) 5-3
CLROUTQ (Clear Output Queue) 5-3
Copy DBCS Font Table (CPYIGCTBL) B-11
Copy DBCS Sort Table (CPYIGCSRT) B-14
copying DBCS master sort table from data
fle B-16
Copy File (CPYF) 4-1,B-9
Copy from Diskette (CPYFRMDKT) 4-1
Copy From Query File (CPYFRMQRYF) 4-1
Copy from Tape (CPYFRMTAP) 4-1
Copy Source File (CPYSRCF) 4-1, 4-5
Copy Spooled File (CPYSPLF)
copying double-byte data B-9
description 5-2, 5-7
Copy to Diskette (CPYTODKT) 4-1
Copy to Tape (CPYTOTAP) 4-1
CPYF (Copy File)
double-byte data B-9
specific functions 4-4
what can be copied 4-1

command, CL (continued)
CPYFRMDKT (Copy from Diskette) 4-1
CPYFRMQRYF (Copy from Query File)
adding members 4-16
closing 4-8
description 4-1
CPYFRMTAP (Copy from Tape) 4-1
CPYIGCSRT (Copy DBCS Sort Table) B-14
copying DBCS master sort table from data
file B-16
copying master sort table to data file B-15
description B-14
CPYIGCTBL (Copy DBCS Font Table) B-11
CPYSPLF (Copy Spooled File)
copying double-byte data B-9
description 5-2, 5-7
CPYSRCF (Copy Source File)

copying database source files to database source

fles 4-35
description 4-1
specifying TOFILE(*PRINT) 4-5
CPYTODKT (Copy to Diskette) 4-1
CPYTOTAP (Copy to Tape) 4-1
Create DBCS Conversion Dictionary
(CRTIGCDCT) B-18
Create Diskette File (CRTDKTF) 4-15, B-6
Create Display File (CRTDSPF) B-6
Create Duplicate Object (CRTDUPOBJ)
Create Job Queue (CRTJOBQ) 5-10
Create Output Queue (CRTOUTQ) 5-3
Create Physical File (CRTPF) B-6
Create Printer File (CRTPRTF) B-6
Create Source Physical File (CRTSRCPF) B-6
Create Tape File (CRTTAPF) 4-15, B-6
CRTDKTF (Create Diskette File)
diskette label 4-15
indicating DBCS files B-6
CRTDSPF (Create Display File)
indicating DBCS files B-6
CRTDUPOBJ (Create Duplicate Object)
CRTIGCDCT (Create DBCS Conversion
Dictionary) B-18
CRTJOBQ (Create Job Queue) 5-10
CRTOUTQ (Create Output Queue) 5-3
CRTPF (Create Physical File) B-6
CRTPRTF (Create Printer File)
indicating DBCS files B-6
putting IGCALTTYP keyword into effect B-6
CRTSRCPF (Create Source Physical File) B-6
CRTTAPF (Create Tape File)
indicating DBCS files B-6
tape label 4-15
DATA (Data) 5-9
Delete DBCS Conversion Dictionary
(DLTIGCDCT) B-22
Delete DBCS Font Table (DLTIGCTBL) B-11

B-18

B-18

Index

X-3

command, CL (continued)

Delete IGC Sort (DLTIGCSRT) B-14, B-17
Delete Output Queue (DLTOUTQ) 5-3
Delete Override (DLTOVR) 3-1, 3-12
Delete Override Device Entry (DLTOVRDEVE) 3-22
Delete Spooled File (DLTSPLF) 5-2
Display DBCS Conversion Dictionary
(DSPIGCDCT) B-22
Display File Description (DSPFD) 2-13
Display File Field Description (DSPFFD) 2-13
Display Override (DSPOVR)
description 3-1
example 3-14
multiple call levels 3-14
program device entries 3-25
Display Program References (DSPPGMREF) 2-13
Display Spooled File (DSPSPLF)
authority 5-7
description 5-2
DLTIGCDCT (Delete DBCS Conversion
Dictionary) B-22
DLTIGCSRT (Delete DBCS Sort Table) B-14, B-17
DLTIGCSRT (Delete IGC Sort) B-17
DLTIGCTBL (Delete DBCS Font Table) B-11, B-12
DLTOUTQ (Delete Output Queue) 5-3
DLTOVR (Delete Override) 3-1, 3-12
DLTOVRDEVE (Delete Override Device
Entry) 3-22, 3-25
DLTSPLF (Delete Spooled File) 5-2

double-bvte data R-0
uuuuuuu yte gata bB-Y

DSPFD (Display File Description) 2-13
DSPFFD (Display File Field Description) 2-13
DSPIGCDCT (Display DBCS Conversion
Dictionary) B-22
DSPOVR (Display Override)
description 3-1
example 3-14
multiple call levels 3-14
program device entries 3-25
DSPPGMREF (Display Program References) 2-13
DSPSPLF (Display Spooled File)
authority 5-7
description 5-2
Edit DBCS Conversion Dictionary
(EDTIGCDCT) B-19
Edit Object Authority (EDTOBJAUT) 2-7
EDTIGCDCT (Edit DBCS Conversion
Dictionary) B-19
EDTOBJAUT (Edit Object Authority) 2-7
End Batch Job (ENDBCHJOB) 5-9
End Input (ENDINP) 5-9
End Job (ENDJOB) 2-18
End Writer (ENDWTR) 5-6
ENDBCHJOB (End Batch Job) 5-9
ENDINP (End Input) 5-9
ENDJOB (End Job) 2-18

X-4 AS/400 Data Management Guide

command, CL (continued)

ENDWTR (End Writer) 5-6
example 3-25
Grant Object Authority (GRTOBJAUT) 2-7, B-18
GRTOBJAUT (Grant Object Authority) 2-7, B-18
HLDOUTQ (Hold Output Queue) 5-3
HLDSPLF (Hold Spooled File) 5-2
HLDWTR (Hold Writer) 5-6
Hold Output Queue (HLDOUTQ) 5-3
Hold Spooled File (HLDSPLF) 5-2
Hold Writer (HLDWTR) 5-6
Initialize Diskette (INZDKT)
copying DBCS font table B-11
INZDKT (Initialize Diskette)
copying DBCS font table B-11
job input 5-9
Move Object (MOVOBJ) B-18
MOVOBJ (Move Object) B-18
output queues, creating and controlling
Override with Database File (OVRDBF)
description 3-1
example 3-6
redirecting 3-17
Override with Diskette File (OVRDKTF)
description 3-1
diskette label 4-15
example 3-7
Override with Display File (OVRDSPF)
description 3-1
indinratinn NROQ fila

indicating DBCS files
Override with Intersystem Communications Function
File (OVRICFF) 3-1
Override with Intersystem Communications Function
Program Device Entry (OVRICFDEVE) 3-22, 3-24
Override with Message File (OVRMSGF) 3-1
Override with Printer File (OVRPRTF)
basic example 3-3
description 3-1
IGCALTTYP keyword B-6
same call level example 3-10
Override with Save File (OVRSAVF) 3-1
Override with Tape File (OVRTAPF)
description 3-1
tape label 4-15
overrides, used for 3-1
OVRDBF (Override with Database File)
description 3-1
example 3-6
redirecting 3-17
OVRDKTF (Override with Diskette File)
description 3-1
diskette label 4-15
example 3-7
OVRDSPF (Override with Display File)
description 3-1
indicating DBCS files B-6

B-6

command, CL (continued)

OVRICFDEVE (Override with Intersystem Commu-
nications Function Program Device Entry) 3-22,
3-24

OVRICFF (Override with Intersystem Communica-
tions Function File) 3-1

OVRMSGF (Override with Message File) 3-1

OVRPRTF (Override with Printer File)

basic example 3-3
description 3-1

IGCALTTYP keyword B-6
same call level example 3-10

OVRSAVF (Override with Save File) 3-1

OVRTAPF (Override with Tape File)

description 3-1
tape label 4-15

RCLSPLSTG (Reclaim Spool Storage) 5-14

Reclaim Spool Storage (RCLSPLSTG) 5-14

Release Output Queue (RLSOUTQ) 5-3

Release Spooled File (RLSSPLF) 5-2

Release Writer (RLSWTR) 5-6

Remove Intersystem Communications Function
Program Device Entry (RMVICFDEVE) 3-25

Rename Object (RNMOBJ) B-18

Reorganize Physical File Member (RGZPFM) 4-35

Restore Library (RSTLIB) B-18

Restore Object (RSTOBUJ)

DBCS conversion dictionary B-18
DBCS sort table B-14, B-15

RETURN 3-5

Revoke Object Authority (RVKOBJAUT) 2-7, B-18

RGZPFM (Reorganize Physical File Member) 4-35

RLSOUTQ (Release Output Queue) 5-3

RLSSPLF (Release Spooled File)

description 5-2

RLSWTR (Release Writer) 5-6

RMVICFDEVE (Remove Intersystem Communica-
tions Function Program Device Entry) 3-25

RNMOBJ (Rename Object) B-18

RSTLIB (Restore Library) B-18

RSTOBJ (Restore Object)

DBCS conversion dictionary B-18
DBCS sort table B-14, B-15

RVKOBJAUT (Revoke Object Authority) 2-7, B-18

SAVCHGOBJ (Save Changed Object) B-18

Save Changed Object (SAVCHGOBJ) B-18

Save Library (SAVLIB) B-18

Save Object (SAVOBJ)

DBCS conversion dictionaries B-18
DBCS sort table B-14

Save System (SAVSYS) B-15

SAVLIB (Save Library) B-18

SAVOBJ (Save Object)

DBCS conversion dictionaries B-18
DBCS sort table B-14, B-15
SAVSYS (Save System) B-15, B-18

command, CL (continued)

SBMDBJOB (Submit Database Jobs) 5-9
SBMDKTJOB (Submit Diskette Jobs) 5-9
Send Network Spooled File (SNDNETSPLF)
authority 5-7
description 5-2
SNDNETSPLF (Send Network Spooled File)
authority 5-7
description 5-2
spooled files 5-2
spooling writer 5-6
Start Character Generator Utility (STRCGU)
and other DBCS font table commands B-11,
B-14
use B-13
Start Database Reader (STRDBRDR) 5-9
Start Diskette Reader (STRDKTRDR) 5-9
Start Diskette Writer (STRDKTWTR) 5-6
Start Font Management Aid (STRFMA) B-11
Start Printer Writer (STRPRTWTR) 5-6
STRCGU (Start Character Generator Utility)
and other DBCS font table commands B-11,
B-14
use B-13
STRDBRDR (Start Database Reader) 5-9
STRDKTRDR (Start Diskette Reader) 5-9
STRDKTWTR (Start Diskette Writer) 5-6
STRFMA (Start Font Management Aid) B-11
STRPRTWTR (Start Printer Writer)
description 5-6
Submit Database Jobs (SBMDBJOB) 5-9
Submit Diskette Jobs (SBMDKTJOB) 5-9
submit job 5-9
TFRCTL (Transfer Control)
file overrides 3-6
program device entry overrides 3-25
Transfer Control (TFRCTL)
file overrides 3-6
program device entry overrides 3-25
VRYCFG (Vary Configuration) B-13
Work with Job Queue (WRKJOBQ) 5-11
Work with Output Queue (WRKOUTQ)
description 5-3
displaying status of spooled file 5-6
Work with Output Queue Description
(WRKOUTQD) 5-4
Work with Spooled File Attributes (WRKSPLFA) 5-2
Work with Spooled Files (WRKSPLF) 5-2
WRKJOBQ (Work with Job Queue) 5-11
WRKOUTQ (Work with Output Queue)
description 5-3
displaying status of spooled file 5-6
WRKOUTQD (Work with Output Queue
Description) 5-4
WRKSPLF (Work with Spooled Files) 5-2
WRKSPLFA (Work with Spooled File Attributes) 5-2

Index X-5

commit operation
description 2-1
file types 2-2
high-level language 2-4
commitment control 2-9
compile-program authority 2-6
completion message
See also message
messages sent 4-7
resending for Copy File command 4-7
with exceptions
major return codes 2-18
compressing file
COMPRESS parameter 4-23
considerations 4-24
configuration, automatic for output queues 5-4
control character, shift
description of B-3
inserting B-6
control language (CL)
See also command, CL
program overrides 3-6
conversion
alphanumeric applications to DBCS
applications B-10
rules for copying files 4-34
conversion, DBCS
alphanumeric blanks to DBCS blanks B-29
changing the DBCS conversion dictionaries
used B-24
deleting unwanted DBCS words B-29
description B-23
entering double-byte data B-24
how it works B-24
many alphanumeric entries at one time B-28
one alphanumeric entry to a double-byte entry B-25
performing (including example operations) B-24
use while editing the DBCS conversion
dictionary B-29
where you can use B-23
Convert Output Queue (CVTOUTQ) command 5-8
copy command
See also copying file
copying between different database record
formats 4-25
errors 4-7
excluding records 4-24
functions 4-2
null values 4-9
resending completion message CL program
example 4-7
selecting database members 4-14
selecting records
a specified number 4-20
by a character 4-21
by field value 4-22
by record format name 4-16

X-6 AS/400 Data Management Guide

copy command (continued)
selecting records (continued)
using record keys 4-17
using relative record numbers 4-17
specific copy functions 4-4
unformatted print listing 4-25
zero records 4-8
Copy DBCS Font Table (CPYIGCTBL) command
for DBCS font tables B-11
from tape or diskette B-12
onto tape or diskette B-11
Copy DBCS Sort Table (CPYIGCSRT) command
copying DBCS master sort table from data file B-16
copying master sort table to data file B-15
sort table B-14
copy error 4-7
Copy File (CPYF) command
See also copying file
copying between different database record
formats 4-25
creating to-file 4-12
double-byte data B-9
errors 4-7
excluding records 4-24
files that can be copied 4-1
functions 4-2
monitoring for zero records 4-8
printing copied and excluded records 4-24
resending completion message CL program
example 4-7
selecting a specified number of records 4-20
selecting database members 4-14
selecting records
based on character content 4-21
based on field value 4-22
by record format name 4-16
using a character 4-21
using record keys 4-17
using relative record numbers 4-17
specific copy functions 4-4
Copy from Diskette (CPYFRMDKT) command 4-1
Copy from Query File (CPYFRMQRYF) command
adding members 4-16
closing 4-8
description 4-1
Copy from Tape (CPYFRMTAP) command 4-1
copy function
copy command support for null values 4-10
CPYFRMQRYF support for CCSIDs 4-9
CPYSRCEF support for CCSIDs 4-10
date, time and timestamp considerations 4-37
printing records 4-25
copy operation
database to database
FMTOPT parameter values 4-26
device and database files combinations 4-1

Copy Source File (CPYSRCF) command
copying database source files to database source
files 4-35
description 4-1
specifying TOFILE(*PRINT) 4-5
Copy Spooled File (CPYSPLF) command
authority 5-7
copying double-byte data B-9
description 5-2
Copy to Diskette (CPYTODKT) command 4-1
Copy to Tape (CPYTOTAP) command 4-1
copying
DBCS
font tables B-11, B-12
from a file (move from System/36) B-16
from tape or diskette (restoring) B-12
onto diskette (saving) B-11
sort tables B-15, B-16
to a file (move to System/36 or AS/Entry) B-15
DBCS font table B-11
DLTIGCTBL (Delete DBCS Font Table) B-11
file 4-1,B-9
from diskette 4-1
from query file 4-1
from tape 4-1
IGC sort B-14
records
functions 4-2
more than 9999 4-36
selecting to copy 4-16
specific functions 4-4
source file 4-1, 4-5
spooled file
authority 5-7, B-9
description 5-2
to diskette 4-1
to tape 4-1
copying file
See also copy command
See also Copy File (CPYF) command
adding records 4-10
all members 4-14
allocation considerations 4-38
arrival sequence access path only 4-36
authority needed 4-39
commands used 4-1, B-9
compressing a file 4-23
containing double-byte data B-9
conversion rules 4-34, B-9
creating
duplicate to-file member example 4-9
to-file 4-12
unformatted print listing 4-25
database file record formats 4-26
database source to database source 4-35
database source to device source 4-35

copying file (continued)

DBCS
from tape or diskette B-12
nonspooled B-9
onto tape or diskette B-11
spooled B-9
deleted records 4-23
device and database files combinations 4-1
device data file and device source file 4-35
device source to database source 4-35
double-byte data B-9
dropping fields 4-26
error considerations 4-36
from-file and to-file different types (source and
data) 4-6
from-file member, empty
example 4-9
MBROPT(*REPLACE) specified 4-8
function 4-1
inserting sequence number and date 4-35
lock state 4-38
mapping
character fields 4-34
DBCS fields B-9
fields 4-26
numeric fields 4-34
messages sent as tests 4-8
monitoring
errors 4-7
zero records 4-8
performance considerations 4-39
physical file 4-10
position errors 4-37
printing included and excluded records 4-24
record sequence for 4-6
records
more than 9999 4-36
selecting to copy 4-16
replacing records 4-10
resending completion message CL program
example 4-7
selecting members 4-14
selecting records
a specified number 4-20
by a character 4-21
by field value 4-22
by relative record number 4-17
compressing deleted records 4-26
parameters 4-16
sequence of copied records 4-6
to an undefined file 4-12
to-file member example, creating duplicate 4-9
undefined file 4-12
using record format
logical file to device file 4-16
logical file to physical file example 4-16

Index

X-7

copying file (continued)
what can be copied 4-1
CPYF (Copy File) command
See also copying file
copying between different database record
formats 4-25
creating to-file 4-12
double-byte data B-9
errors 4-7
excluding records 4-24
files that can be copied 4-1
functions 4-2
monitoring for zero records 4-8
printing copied and excluded records 4-24
resending completion message CL program
example 4-7
selecting a specified number of records 4-20
selecting database members 4-14
selecting records
based on character content 4-21
based on field value 4-22
by record format name 4-16
using a character 4-21
using record keys 4-17
using relative record numbers 4-17
specific copy functions 4-4
CPYFRMDKT (Copy from Diskette) command 4-1
CPYFRMQRYF (Copy From Query File) command
CCSID support 4-1, 4-9
CPYFRMQRYF support for CCSIDs 4-9
CPYFRMTAP (Copy from Tape) command 4-1
CPYIGCSRT (Copy DBCS Sort Table) command
copying DBCS master sort table from data file B-16
copying master sort table to data file B-15
sort table B-14
CPYIGCTBL (Copy DBCS Font Table) command
for DBCS font tables B-11
from tape or diskette B-12
onto tape or diskette B-11
CPYSPLF (Copy Spooled File) command
authority 5-7
copying double-byte data B-9
description 5-2
CPYSRCF (Copy from Source File) command
CCSID support 4-10
CPYSRCF (Copy Source File) command 4-1, 4-5
CPYSRCF support for CCSIDs 4-9
CPYTODKT (Copy to Diskette) command 4-1
CPYTOTAP (Copy to Tape) command 4-1
Create DBCS Conversion Dictionary (CRTIGCDCT)
command B-18
Create Diskette File (CRTDKTF) command
diskette label 4-15
indicating DBCS files B-6
Create Display File (CRTDSPF) command
indicating DBCS files B-6

X-8 AS/400 Data Management Guide

Create Duplicate Object (CRTDUPOBJ)
command B-18
Create Job Queue (CRTJOBQ) command 5-10
Create Output Queue (CRTOUTQ) command 5-3
Create Physical File (CRTPF) command B-6
Create Printer File (CRTPRTF) command
indicating DBCS files B-6
putting IGCALTTYP keyword into effect B-6
Create Source Physical File (CRTSRCPF)
command B-6
Create Tape File (CRTTAPF) command
indicating DBCS files B-6
tape label 4-15
creating
DBCS conversion dictionaries B-18
DBCS conversion dictionary B-18
DBCS font tables B-11
DBCS sort table B-15
diskette file 4-15, B-6
display file B-6
duplicate object B-18
job queue 5-10
job queues 5-10
output queue 5-3
physical file B-6
printer file B-6
source physical file B-6
tape file 4-15, B-6
to-file on CPYF command 4-12
CRTDKTF (Create Diskette File) command 4-15,
B-6
CRTDSPF (Create Display File) command B-6
CRTDUPOBUJ (Create Duplicate Object)
command B-18
CRTFILE (Create File) parameter 4-12
CRTIGCDCT (Create DBCS Conversion Dictionary)
command B-18
CRTJOBAQ (Create Job Queue) command 5-10
CRTOUTAQ (Create Output Queue) command 5-3
CRTPF (Create Physical File) command B-6
CRTPRTF (Create Printer File) command B-6
CRTSRCPF (Create Source Physical File)
command B-6
CRTTAPF (Create Tape File) command 4-15, B-6

D

damaged
DBCS-capable devices B-13
job queues 5-12
output queues 5-5
Data (DATA) command 5-9
data authority 2-6
data description specifications (DDS)
DBCS capabilities B-6

data file, inline
batch job 5-12
description 5-12
file type, specifying 5-13
named 5-12
open considerations 5-13
opening 5-13
searching 5-13
sharing between programs 5-13
unnamed 5-12
data management
CCSID support 4-25
date, time and timestamp considerations 4-37
definition 1-1
message number ranges 2-16
operations 2-1
printing records 4-25
database
I/O feedback area A-18
records
copying deleted 4-23

displaying using relative record numbers 4-18

selecting to copy 4-16
database file
allocation considerations 4-38
authority required for copying 4-39
definition 1-1
overriding with 3-1
partial object damage 4-36
redirecting input 3-21
redirecting output 3-22
database job
submitting 5-9
database reader
starting 5-9
database source file
copying to database source files 4-35
copying to device source files 4-35
date data type or field
time 4-37
timestamp 4-37
date, time and timestamp considerations 4-37
DBCS (double-byte character set)
definition B-1
DBCS CL command
See command, CL
DBCS code scheme B-2
DBCS conversion
alphanumeric blanks to DBCS blanks B-29
changing the DBCS conversion dictionaries
used B-24
deleting unwanted DBCS words B-29
description B-23
entering double-byte data B-24
how it works B-24
many alphanumeric entries at one time B-28

DBCS conversion (continued)

one alphanumeric entry to a double-byte entry B-25

perform (including example operations) B-24
use while editing the DBCS conversion
dictionary B-29

where you can use B-23

DBCS conversion dictionary
adding the first entries to B-20
beginning editing B-20
commands B-18
creating B-18
deleting B-22
deleting an entry B-21
description B-17
displaying B-22
displaying and printing B-22
editing B-19, B-21
editing (add and change terms) B-19
ending editing B-21
moving entries B-21
system-supplied B-17
user-created B-17

DBCS display station
number of input fields B-8

DBCS field
determining the length B-4

DBCS file
copying B-9
Create Diskette File (CRTDKTF) command B-6
description B-5
restrictions B-6
specifying B-5

DBCS font table
check for the existence of B-11
checking B-11
commands used with B-11
copying B-11
copying from tape (restore) B-12
copying from tape or diskette B-12
copying onto diskette (save) B-12
deleting B-11, B-12
description of B-10
saving onto diskette B-11
system-supplied B-10

DBCS sort table
checking for the existence of B-14
commands used with B-14
copying B-16

copying from data file (move from System/36) B-16

copying to data file (move to System/36 or
AS/Entry) B-15

deleting B-16

description of B-13

restoring from tape or diskette B-15

saving onto diskette B-15

Index

X-9

DBCS-capable device
damaged B-13
display stations B-8
display stations, number of characters displayed
at B-8
default (DFT) keyword
for physical files 4-26
mapping fields 4-34
default output queue 5-4
default value
changing 5-4
delete
authority 2-6
DBCS conversion dictionaries B-22
DBCS font table B-12
DBCS sort table B-16
DBCS words B-29

operation
description 2-1
file types 2-2

high-level language 2-4
output queue 5-5
overrides 3-12
Delete DBCS Conversion Dictionary (DLTIGCDCT)
command B-22
Delete DBCS Font Table (DLTIGCTBL)
command B-11, B-12, B-13
Delete DBCS Sort Table (DLTIGCSRT)
command B-14, B-17
Delete IGC Sort (DLTIGCSRT) command B-17
Delete Output Queue (DLTOUTQ) command 5-3
Delete Override (DLTOVR) command
description 3-1
example 3-13
use 3-12
Delete Override Device Entry (DLTOVRDEVE)
command
description 3-22
example 3-25
Delete Spooled File (DLTSPLF) command 5-2
delete-file authority 2-6
deleted record
COMPRESS parameter 4-18
compressing 4-26
copying 4-23
in the from-file 4-2, 4-20
in the to-file 4-39
deleting
DBCS conversion dictionary B-22
DBCS font table B-11, B-12
DBCS sort table B-16
DBCS words B-29
IGC sort B-14, B-17
output queue
command 5-3
damaged 5-5

X-10 AS/400 Data Management Guide

deleting (continued)
override 3-1, 3-12
override device entry 3-22
spooled file 5-2
designing application programs that process
double-byte data B-9
device
copying to database source files 4-35
support for DBCS display B-8
device definition list A-7
device description 5-1
device entry
See program device entry
device file
See also diskette file
See also display file
See also tape file
allocation considerations 4-38
authority required for copying 4-39
definition 1-1
diskette
copying 4-1
initializing B-11
diskette file
changing 4-15
copying 4-1
creating 4-15, B-6
DBCS B-5
overriding with 3-1, 4-15
redirecting input 3-20
redirecting output 3-20
diskette jobs
submitting 5-9
diskette label 4-15
diskette reader
starting 5-9
diskette writer
starting 5-6
display
DBCS conversion dictionary B-22
Edit Related Words B-20
Work with DBCS Conversion Dictionary B-19

Display DBCS Conversion Dictionary (DSPIGCDCT)

command B-22
display device support
DBCS B-8
display file
changing B-6
creating B-6
DBCS B-5
overriding with 3-1, B-6
redirecting
input 3-20
input/output 3-21
output 3-21

Display File Description (DSPFD) command
format level identifier 2-13
Display File Field Description (DSPFFD)
command 2-13
display I/O feedback area A-15
Display Override (DSPOVR) command
description 3-1
example 3-14
functions example 3-15
multiple call levels 3-14
program device entries 3-25
Display Program References (DSPPGMREF)
command 2-13
Display Spooled File (DSPSPLF) command
authority 5-7
description 5-2
display-file-description authority 2-6
displayed message 2-16
displaying
DBCS conversion dictionary B-22
file description 2-13
file field description 2-13
file-description authority 2-6
override
in original environment 3-1, 3-14
program device entry overrides 3-25
program references 2-13
source files
SEU (source entry utility) 2-13
spooled file 5-2
DLTIGCDCT (Delete DBCS Conversion Dictionary)
command B-22
DLTIGCSRT (Delete IGC Sort) command B-14, B-17
DLTIGCTBL (Delete DBCS Font Table)
command B-11
DLTOUTQ (Delete Output Queue) command 5-3
DLTOVR (Delete Override) command 3-1, 3-12
DLTOVRDEVE (Delete Override Device Entry)
command 3-22
DLTSPLF (Delete Spooled File) command 5-2
double-byte character
basic B-4
code scheme B-2
extended B-4
how the system processes B-4
identifying a string of B-3, B-8
maximum number (extended) that can be
displayed B-8
maximum number input fields displayed B-8
process extended characters B-4
size B-4
double-byte character set (DBCS)
applications, converted from alphanumeric applica-
tions B-10
codes, invalid B-3
words, how to delete during DBCS conversion B-29

double-byte code
effects of printing invalid B-3
double-byte data
basic information B-1
considerations for using B-3
designing application programs that process B-9
identifying B-3
length of fields B-4
restrictions B-4
where you can use B-3
dropping fields, copying files 4-26
DSPFD (Display File Description) command 2-13
DSPFFD (Display File Field Description)
command 2-13
DSPIGCDCT (Display DBCS Conversion Dictionary)
command B-22
DSPOVR (Display Override) command
description 3-1
example 3-14
functions example 3-15
multiple call levels 3-14
program device entries 3-25
DSPPGMREF (Display Program References)
command 2-13
DSPSPLF (Display Spooled File) command
authority 5-7
description 5-2
duplicate object
creating B-18
Duplicate Spooled File (DUPSPLF) command 5-8

E
Edit DBCS Conversion Dictionary (EDTIGCDCT)
command B-19

Edit Object Authority (EDTOBJAUT) command 2-7
Edit Related Words display B-20
editing

DBCS conversion dictionary B-19

object authority 2-7
EDTIGCDCT (Edit DBCS Conversion Dictionary)

command B-19

EDTOBJAUT (Edit Object Authority) command 2-7
End Batch Job (ENDBCHJOB) command 5-9
End Input (ENDINP) command 5-9
End Job (ENDJOB) command 2-18
End Writer (ENDWTR) command 5-6
ENDBCHJOB (End Batch Job) command 5-9
ending

batch job 5-9

input 5-9

job 2-18

writer 5-6
ENDINP (End Input) command 5-9
ENDJOB (End Job) command 2-18

Index X-11

ENDWTR (End Writer) command 5-6
ERRLVL (errors allowed) parameter
error messages 4-36
error
application program 2-15
copying files 4-7
device or session, open or acquire operation 2-19
limiting number during copies 4-36
permanent
device 2-19
session 2-19
permanent system 2-18
position 4-37
recoverable device or session 2-19
error message
application program 2-15
ERRLVL parameter 4-36
error recovery
See also error
actions 2-17
handling 2-15
escape message
copy errors 4-7
example
adding records 4-10
Convert Output Queue (CVTOUTQ) command 5-8
creating a job queue 5-10
creating duplicate to-file member 4-9
creating output queues 5-4
delete override 3-12
display override 3-14
Duplicate Spooled File (DUPSPLF) command 5-8
externally described file
overrides 3-11
file override (Transfer Control command) 3-6
from-file member, empty 4-9
job level override 3-5
merged file 3-14
monitoring for from-file not found 4-7
monitoring for zero records on CPYF command 4-8
Move Spooled File (MOVSPLF) command 5-8
multiple call levels
program device entry override 3-24
organization of input stream 5-8
Override with Diskette File (OVRDKTF)
command 3-7
Override with Intersystem Communications Function
Program Device Entry (OVRICFDEVE) command
changing running environment 3-24
initializing an environment 3-24
overriding
attributes of printer file 3-2
file names or types and attributes of new file 3-4
format selection processing attribute 3-23
printer file used in program 3-2
using OVRSCOPE(*JOB) 3-5

X-12 AS/400 Data Management Guide

example (continued)
program device entry
overriding remote location name 3-23
protected program device 3-25
resending CPYF command completion
message 4-7
RETURN command and override 3-5
securing
file 3-9
program device entry 3-25
selecting records for copying 4-16
spooling functions 5-8
two overrides for same file 3-6
extended character processing B-4, B-5
externally described file
high-level language compiler 2-12
overrides 3-11

F

feedback area
get attributes A-20
I/0
common 2-15, A-11
database A-18
display A-15
file-dependent 2-15
general description 2-15
ICF A-15
printer A-18
open
device definition list A-7
general description 2-15
individual descriptions A-1
volume label fields A-10
FEOD operation
description 2-1
file types 2-2
high-level language 2-4
field
binary, no decimal positions
conversion 4-34
binary, with decimal positions
conversion 4-34
character
conversions 4-34
mapping 4-34
numeric
mapping 4-34
file
See also copying
See also database
See also DBCS
See also diskette
See also display
See also file redirection

file (continued) file processing authority 2-6

See also ICF file redirection
See also overriding file See also overriding file
See also save database input 3-21
See also tape file database output 3-22
attribute defaults 3-18
changing 3-2 description 3-17
changing versus overrides 3-2 diskette input 3-20
copying 4-1, B-9 diskette output 3-20
copying an unformatted print listing 4-25 display input 3-20
data authorities 2-6 display input/output 3-21
DBCS display output 3-21
copying B-9 ICF input 3-19
device file support B-5 ICF input/output 3-20
diskette B-5 ICF output 3-19
display B-5 printer input 3-19
ICF B-5 spooled files 5-2
printer B-5, B-7 tape input 3-22
tape B-5 tape output 3-22
externally described valid 3-18
overrides 3-11 file resource
inline data 5-12 allocating 2-10
opening 2-11 file status code 2-15
overrides versus changing 3-2 file type
permanently changing 2-12 main operations allowed 2-2
processing 2-1 overriding 3-18
public authority 2-7 floating-point
redirecting field conversions 4-34
combinations to avoid 3-18 value, specifying numeric fields 4-18
description 3-17 FMTOPT (record format field mapping)
valid combinations 3-18 parameter 4-25
resources, allocating 2-10 font management aid
securing overrides 3-9 starting B-11
shared feedback areas 2-14 font table, DBCS
sharing commands B-11
close considerations 2-10 description of B-10
inline data 5-13 finding out if one exists B-11
open considerations 2-8 restoring from tape or diskette B-12
source overrides 3-11 saving onto diskette B-11
source, displaying 2-13 FORTRAN/400 operation 2-5
storage authority 2-6 from-file
temporarily changing 2-12 authority required for copying 4-39
file authority monitoring for zero records 4-8
moving 2-6 FROMKEY (copy from record key) parameter 4-17
renaming 2-6 FROMLABEL parameter 4-14
file description FROMMBR (from member) parameter 4-14
change authority 2-6 FROMRCD (copy from record number)
changes to 2-12 parameter 4-17
displaying 2-13
opening files 2-11 G
temporary changes 2-11
file field description get-attributes feedback area A-20
displaying 2-13 grant authority 2-6
file function authority 2-6 Grant Object Authorlty (GRTOBJAUT)
file object authority 2-6 command 2-7, B-18

index X-13

granting
object authority 2-7, B-18
GRTOBJAUT (Grant Object Authority)
command 2-7, B-18

H

handling application program error 2-15
high-level language (HLL)
compiler 2-12
operations 2-4
programs
allocating resources 2-10
performing override 3-9
temporary changes 2-12
HLDOUTQ (Hold Output Queue) command 5-3
HLDSPLF (Hold Spooled File) command 5-2
HLDWTR (Hold Writer) command 5-6
HLL (high-level language)
compiler 2-12
operations 2-4
programs
allocating resources 2-10
performing override 3-9
temporary changes 2-12
Hold Output Queue (HLDOUTQ) command 5-3
Hold Spooled File (HLDSPLF) command 5-2
Hold Writer (HLDWTR) command 5-6
holding
output queue 5-3
spooled file 5-2
writer 5-6

I/0 considerations
shared files 2-9
1/0 feedback area
common A-11
database A-18
display A-15
ICF A-15
printer A-18
IBM-supplied
job queues 5-9
output queues 5-4
ICF (intersystem communications function) file
DBCS B-5
I/O feedback area A-15
overriding with 3-1
redirecting input 3-19
redirecting input/output 3-20
redirecting output 3-19
ICF device entry
adding 3-23, 3-25

X-14 AS/400 Data Management Guide

ICF I/O feedback area A-15
IGC sort
copying B-14
deleting B-14, B-17
ILE (Integrated Language Environment) model
sharing files 2-8
INCCHAR (inciude records by characier tesit) param-
eter 4-21
INCREL (include records by field test)
parameter 4-22
Initialize Diskette (INZDKT) command B-11
initializing
diskette B-11
inline data file
batch job 5-12
description 5-12
file type, specifying 5-13
named 5-12
open considerations 5-13
opening 5-13
searching 5-13
sharing between programs 5-13
spooling library (QSPL) 5-13
unnamed 5-12
input
ending 5-9
input fields on DBCS display
displayed characters B-8
input spooling
description 5-1, 5-8
elements of 5-8
relationship of elements 5-8
input stream 5-8
input/output
authority 2-6
feedback area 2-15
operation
description 2-1
inserting sequence number and date, copying
file 4-35
Integrated Language Environment (ILE) model
sharing files 2-8
interactive job
definition 3-4
intersystem communications function (ICF) file
DBCS B-5
I/O feedback area A-15
overriding with 3-1
redirecting input 3-19
redirecting input/output 3-20
redirecting output 3-19
intersystem communications function (ICF) program
device entry
adding 3-23
removing 3-25

invalid double-byte code
effects of printing B-3

INZDKT (Initialize Diskette) command B-11

J

job
batching 5-9
definition 3-4
ending 2-18

ending command 2-18
input commands 5-9
interactive 3-4
log error messages 2-15
shared files in
input/output considerations 2-9
open considerations 2-9
transferring 5-11
job level
override command 3-4
scoping override 3-4
job queue
authorization 5-11
changing to different
job active 5-11
job not active 5-11
creating 5-10
damaged 5-12
description 5-9
errors, recovering 5-11
IBM-supplied 5-9
multiple 5-10
multiple within a subsystem 5-11
recovering 5-11
security 5-11
working with 5-11

K
key field
logical numeric 4-24
key value
specifying 4-18
keyed sequence access path 4-6

L

label
volume A-10
level check (LVLCHK) parameter
*NO value
externally described data 3-18
overrides 3-11
*YES value 2-12
file description changes 2-13

level checking 2-12
level identifier 2-12
library
QGPL 54
QSPL 5-13
QUSRSYS 5-4
restoring B-18
saving B-18
library list
changing B-10
sharing files 2-9
logical numeric key field 4-24
LVLCHK (level check) parameter
*NO value
externally described data 3-18
overrides 3-11
“YES value 2-12
file description changes 2-13

M

major/minor return code

See return code
mapping

character fields 4-34

fields 4-26

numeric fields 4-34
maximum number of displayed characters B-8
MBROPT (replace or add records) parameter 4-10
member

selecting to copy 4-14
merging attributes 3-3
message

alert 2-16

completion with exceptions 2-18

device or session error

open or acquire operation 2-19

diagnostic 2-16

displayed 2-16

error 2-15

file error ranges 2-16
message file

overriding with 3-1
modifying DBCS conversion dictionary

See editing
monitoring

for copy errors 4-7

messages for zero records on copy commands 4-8
Move Object (MOVOBJ) command B-18
Move Spooled File (MOVSPLF) command 5-8
move-file authority 2-6
moving

object B-18
MOVOBJ (Move Object) command B-18
multiple call level

program device entry example 3-24

Index X-15

multiple job queue
controlling 5-10
reasons for designating 5-10
using within a subsystem 5-11
multiple output queue
using 5-5

N

named inline data file 5-12
NBRRCDS (number of records to copy)
parameter 4-20
nested call
file example 3-10
program device entry example 3-24
network spooled file
sending 5-2
normal completion return code 2-17
null value support
copy commands 4-10
number of
displayed double-byte characters, maximum B-8
input fields, maximum DBCS B-8
spooled file
controlling 5-7
number-of-seconds value (WAITFILE) 2-11
numeric field
mapping 4-34

'

\Y
object
allocating 2-10
authority 2-6
checking B-14
damage to database file 4-36
enhancements to object management B-18
moving B-18
renaming B-18
restoring B-14
saving B-14
object authority
editing 2-7
granting 2-7, B-18
revoking 2-7, B-18
ODP (open data path)
description 2-8
overrides 3-3
open authority 2-6
open considerations
inline data files 5-13
sharing files in same job 2-8
open data path (ODP)
description 2-8
overrides 3-3

X-16 AS/400 Data Management Guide

open feedback area
description 2-15
device definition list A-7
individual descriptions A-1
volume label fields A-10
open operation
allocating resources 2-10
description 2-1
file types 2-2
high-level language 2-4, 2-8
sharing files 2-8
opening file 2-11
operation
acquire
allocating resources 2-11
description 2-1
file types 2-2
high-level language 2-4
BASIC 2-4

close
description 2-1
file types 2-2

high-level language 2-4
commit

description 2-1

file types 2-2

high-level language 2-4
created to-file compared to from-file
data management overview 2-1

dalata
GEiCie

description 2-1

file types 2-2

high-level language 2-4
FEOD

description 2-1

file types 2-2

high-level language 2-4
file types 2-2
high-level language 2-4
input/output 2-1
open

allocating resources 2-10

description 2-1

file types 2-2

high-level language 2-4
read

description 2-1

file types 2-2

high-level language 2-4
release

description 2-1

file types 2-2

high-level language 2-4
requiring resource allocation 2-10
rollback

description 2-1

file types 2-2

4-14

operation (continued)
rollback (continued)
high-level language 2-4
starting program on remote system
allocating resources 2-11
update
description 2-1
file types 2-2
high-level language 2-4
write
description 2-1
file types 2-2
high-level language 2-4
write-read
description 2-1
file types 2-2
high-level language 2-4
order of spooled files on output queue 5-4
original program model 2-8
OUTFMT (print format) parameter 4-24
output queue
automatic configuration 5-4
cannot find 5-4
changing 5-3
clearing 5-3
creating 5-3, 5-4
damaged 5-5
default for printer 5-4
default for system printer 5-4
deleting 5-3
description 5-1
holding 5-3
IBM-supplied 5-4
multiple 5-5
order of spooled files on 5-4
processing 5-3
recovering 5-5
releasing 5-3
working with 5-3
output queue description
working with 5-4
output spooling
description 5-1
elements of 5-1
override
application
order 3-6
command
temporary changes 2-12
commands used 3-1
deleting 3-1, 3-12
description 3-1
device entry
deleting 3-22
displaying 3-1
end-of-routing step or end-of-job processing 3-12

override (continued)
examples, general 3-1
external data definitions 3-11
file
commands used for 3-1
deleting 3-12
displaying example 3-14
open data path (ODP) 3-3
format selection processing attribute
example 3-23
merged 3-14
merged file
displaying example 3-14
message files 3-2
multiple call levels
description 3-7
display file example 3-14
printer file example 3-10
program device entries 3-24
order of application 3-6
OVRSCOPE (override scope) parameter 3-4
program device entries
considerations 3-24
deleting 3-25
description 3-22
example 3-24
remote location name 3-23
remote location name and session
attributes 3-23

scope
call level 3-4
job level 3-4

session attributes 3-23
source files 3-11
SRCFILE parameter 3-12
SRCMBR parameter 3-12
time in effect 3-2
when specified 3-2
Override with Database File (OVRDBF) command
description 3-1
example
at same call level 3-7
with name change 3-6
redirecting 3-17
Override with Diskette File (OVRDKTF) command
description 3-1
diskette label 4-15
example 3-7
Override with Display File (OVRDSPF)
command 3-1, B-6
Override with Intersystem Communications Func-
tion File (OVRICFF) command 3-1
Override with Intersystem Communications Func-
tion Program Device Entry (OVRICFDEVE)
command
description 3-22

Index X-17

Override with Intersystem Communications Func-
tion Program Device Entry (OVRICFDEVE)
command (continued)

example 3-24

Override with Message File (OVRMSGF)
command 3-1

Override with Printer File (OVRPRTF) command

basic example 3-3
description 3-1
IGCALTTYP keyword B-6
multiple call level example 3-10
same call level example 3-10
Override with Save File (OVRSAVF) command 3-1
Override with Tape File (OVRTAPF) command
description 3-1
tape label 4-15
overriding
program device entries
applying from multiple call levels 3-24
considerations 3-24
deleting 3-25
description 3-22
overriding 3-24
remote location name and session
attributes 3-23
overriding file
See also call level
See also file redirection
applying
at same cail leveli 3-7
from high-level language program 3-9
from multiple call levels 3-7
using high-level language programs 3-2
using override commands 3-3
when compiling program 3-11
attribute 3-2
call level 3-4
CL program 3-9
commands that ignore 3-12
commands used for 3-1

database
applying 3-7
deleting 3-12
deleting 3-12
description 3-1
device
applying 3-2
deleting 3-12

difference from changing 3-2

different names or types and attributes of new
file 3-4

different types 3-4

displaying 3-14

displaying example 3-14

effect on system commands 3-12

names 3-4

X-18 AS/400 Data Management Guide

overriding file (continued)
open data path (ODP) 3-3
preventing 3-9
printer 3-10
overriding with
database file 3-1
diskette file 3-1, 4-15
display file 3-1, B-6
intersystem communications function file 3-1
message file 3-1
printer file 3-1
save file 3-1
tape file 3-1, 4-15
OVRDBF (Override with Database File) command
description 3-1
example
at same call level 3-7
with name change 3-6
redirecting 3-17
OVRDKTF (Override with Diskette File) command
description 3-1
diskette label 4-15
example 3-7
OVRDSPF (Override with Display File)
command 3-1, B-6
OVRICFDEVE (Override with Intersystem Commu-
nications Function Program Device Entry)
command 3-22
OVRICFF (Override with Intersystem Communica-
tions Function Fiie) command 3-1i
OVRMSGF (Override with Message File)
command 3-1
OVRPRTF (Override with Printer File) command
basic example 3-3
description 3-1
IGCALTTYP keyword B-6
multiple call level example 3-10
same call level example 3-10
OVRSAVF (Override with Save File) command 3-1
OVRSCOPE (override scope) parameter
*JOB value 3-4
OVRTAPF (Override with Tape File) command
description 3-1
tape label 4-15

P

packed decimal field conversions 4-34
parameter
AUT 2-7
copying files 4-4
LVLCHK(*NO) 2-13
LVLCHK(*NO) with externally described data 3-18
LVLCHK(*NO) with overrides 3-11
LVLCHK(*YES) 2-12
OVRSCOPE 3-4

parameter (continued)
PGMDEV (program device) 3-25
run-time, shared files in same job 2-8
SECURE 3-18
SECURE(*YES) 3-9
session attributes 3-23
SHARE 3-18
open processing 2-9
SPOOL 3-18
SRCFILE (source file) parameter 3-12
SRCMBR (source member) parameter 3-12
SRCOPT (source update options) 4-35
SRCSEQ (source sequence numbering) 4-36
TOFILE 3-18
WAITFILE 2-11
Pascal operation 2-5
performance considerations
controlling the number of spooled files 5-7
Copy File (CPYF) command
general items affecting 4-39
parameters affecting 4-39
displaying data in spooling library 5-14
saving a database file in spooling library 5-14
PGMDEYV (program device) parameter 3-25
physical file
copying, sequence 4-6
creating B-6
creating on copy commands 4-13
default (DFT) keyword 4-26
physical file member
reorganizing 4-35
PL/l operation 2-5
position error 4-37
PRINT parameter 4-24
printer
default output queues 5-4
I/O feedback area A-18
printer file
changing B-6
creating B-6
DBCS B-5
overriding with 3-1
redirecting 3-19
using generic override for 3-10
printer writer
starting 5-6
printing
DBCS conversion dictionary B-22
included and excluded records 4-24
spooled files 5-2
printing record
Coded Character Set Identifier (CCSID) 4-25
copy function 4-25
problem
analyzing 2-18
ANZPRB command 2-18

problem analysis, damaged DBCS-capable
devices B-13
processing
close, shared files 2-10
extended characters B-4
files 2-1
overrides, call level effects 3-5
spooled files 5-3
program
See application program
program device entry
change running environment 3-24

changing remote location and attributes of 3-25

commands to define 3-23
functions 3-23
initializing environment 3-24
multiple 3-23
multiple call level example 3-24
overrides
considerations 3-24
description 3-22
displaying 3-25
protecting example 3-25
remote location name
example 3-23
securing 3-25
program override 3-9
program reference
displaying 2-13
program stack
See call stack of active job

programs that process double-byte data, how to

write
considerations B-9

converting alphanumeric applications to DBCS appli-

cations B-10
protecting override 3-6
public authority

AUT parameter 2-7
commands used 2-7

Q
QCMDEXC program 3-5
QIGC system value
DBCS conversion dictionaries
create B-18
delete B-22
display B-22
edit (change, add terms) B-19
edit, examples of B-20

perform object management functions with B-18

print B-22
QINLINE data file 5-12
QPGMR system profile
automatic configuration 5-4

Index

X-19

QPRINT output queue 5-4
QPRTDEV system value
defining system printer 5-4
QRCLSPLSTG system value 5-13
QSPL
spooling library 5-13
spooling subsystem 5-13
QSYSIGCDCT (system-supplied DBCS conversion
dictionary)
contents B-17
definition B-17
query file
copying 4-1
queue
job
authorization 5-11
changing to different 5-11
creating 5-10
damaged 5-12
description 5-9
errors, recovering 5-11
IBM-supplied 5-9
multiple 5-10
multiple within a subsystem 5-11
recovering 5-11
security 5-11
working with 5-11
multiple output 5-5
output
automatic config
cannot find 5-4
creating 5-4
damaged 5-5
default for printer 5-4
default for system printer 5-4
description 5-1
IBM-supplied 5-4
multiple 5-5
order of spooled files on 5-4
processing 5-3
recovering 5-5
QUSRIGCDCT (user-created dictionary) B-17
QUSRSYS library 5-4

R

RCDFMT (record format of logical file)
parameter 4-16
RCLSPLSTG (Reclaim Spool Storage)
command 5-14
read authority 2-6
read operation
description 2-1
file types 2-2
high-level language 2-4

Q

X-20 AS/400 Data Management Guide

Reclaim Spool Storage (RCLSPLSTG)
command 5-14

reclaiming
spool storage 5-14

record
adding when copying files 4-10
copying

functions 4-2
specific functions 4-4
database
copying deleted 4-22
displaying using relative record numbers 4-18
selecting to copy 4-18
deleted
COMPRESS parameter 4-18
compressing 4-26
copying 4-23
from-file 4-2, 4-20
to-file 4-39
examples, adding 4-10
selecting for copying
example 4-16
field value 4-22
record format name 4-16
record keys 4-17
relative record members 4-17
specifying number of records 4-20
using a character 4-21
record format
See also database file
See also display file
copying between 4-25
field mapping (FMTOPT) parameter 4-25
level checking 2-12
parameter 4-16
record format name
selecting records 4-16
selecting records for copying example 4-16
record key
using 4-18
record length
inline data files 5-13
recovering job queue 5-11
recovery action, error handling 2-17
redirecting file
combinations to avoid 3-18
database input 3-21
database output 3-22
description 3-17
diskette input 3-20
diskette output 3-20
display input 3-20
display input/output 3-21
display output 3-21
ICF input 3-19
ICF input/output 3-20

redirecting file (continued)
ICF output 3-19
output, different file types 3-18
printer input 3-19
tape input 3-22
tape output 3-22
valid combinations 3-18
release operation
description 2-1
file types 2-2
high-level language 2-4
Release Output Queue (RLSOUTQ) command 5-3
Release Spooled File (RLSSPLF) command
description 5-2
Release Writer (RLSWTR) command 5-6
releasing
output queue 5-3
spooled file 5-2
writer 5-6
remote location and attributes, changing 3-25
remote location name and session attributes 3-23
remove
See deleting
Remove Intersystem Communications Function
Program Device Entry (RMVICFDEVE)
command 3-25
removing
intersystem communications function program device
entry 3-25
Rename Object (RNMOBJ) command B-18
rename-file authority 2-6
renaming
object B-18
Reorganize Physical File Member (RGZPFM)
command 4-35
reorganizing
physical file member 4-35
replacing records when copying files 4-10
resource
allocating 2-10
restore authority 2-6
Restore Library (RSTLIB) command B-18
Restore Object (RSTOBJ) command
DBCS conversion dictionaries B-18
DBCS sort table B-14, B-15
restoring
library B-18
object B-14
restoring DBCS font tables
See copying DBCS font tables
restoring DBCS sort tables
See copying DBCS sort tables
restriction
DBCS files B-6
deleting a DBCS font table B-12
deleting a DBCS sort table B-17

restriction (continued)
displaying extended characters B-8
naming a user-created dictionary B-18
printing invalid double-byte codes B-3
sharing files in same job 2-9
return code
definition 2-17
description
major 00 2-17
major 02 2-18
major 03 2-18
major 04 2-18
major 08 and 11 2-18
major 80 2-18
major 81 2-19
major 82 2-19
major 83 2-19
normal completion 2-17
use 2-17
RETURN command 3-5
revoke authority 2-6, B-18
Revoke Object Authority (RVKOBJAUT)
command 2-7, B-18
revoking
object authority 2-7, B-18
RGZPFM (Reorganize Physical File Member)
command 4-35
RLSOUTQ (Release Output Queue) command 5-3
RLSSPLF (Release Spooled File) command 5-2
RLSWTR (Release Writer) command 5-6
RM/COBOL-85 for the AS/400 operations 2-4
RMVICFDEVE (Remove Intersystem Communica-
tions Function Program Device Entry)
command 3-25
RNMOBJ (Rename Object) command B-18
rollback operation
description 2-1
file types 2-2
high-level language 2-4
RPG/400 programming language
operations 2-5
RSTLIB (Restore Library) command B-18
RSTOBJ (Restore Object) command
DBCS conversion dictionaries B-18
DBCS sort table B-14, B-15
RVKOBJAUT (Revoke Object Authority)
command 2-7, B-18

S

SAVCHGOBJ (Save Changed Object)
command B-18

save authority 2-6

Save Changed Object (SAVCHGOBJ)
command B-18

Index X-21

save file
overriding with 3-1
Save Library (SAVLIB) command B-18
Save Object (SAVOBJ) command
DBCS conversion dictionaries B-18
DBCS sort table B-14, B-15
Save System (SAVSYS) command B-15, B-18
saving
changed object B-18
DBCS sort table B-14
library B-18
object B-14
system B-15
SAVLIB (Save Library) command B-18
SAVOBJ (Save Object) command
DBCS conversion dictionaries B-18
DBCS sort table B-14
SAVSYS (Save System) command B-15, B-18
SBMDBJOB (Submit Database Jobs) command 5-9
SBMDKTJOB (Submit Diskette Jobs) command 5-9
scope
override 3-4
shared files
in ILE model 2-8
in original program model 2-8
SECURE parameter
*YES value
override protection 3-6, 3-9
override exception 3-18
SCvuUl Iy
file example (overrides) 3-9
override 3-6
program device entry example 3-25
security
add authority 2-6
delete authority 2-6
for spooled files 5-6
function descriptions 2-6
job queues 5-11
object existence authority 2-6
object management authority 2-6
object operational authority 2-6
public authority 2-7
read authority 2-6
update authority 2-6
selecting records for copying
example 4-16
field value 4-22
record format name 4-16
record keys 4-17
relative record members 4-17
specifying number of records 4-20
using a character 4-21
Send Network Spooled File (SNDNETSPLF)
command
authority 5-7

X-22 AS/400 Data Management Guide

Send Network Spooled File (SNDNETSPLF)
command (continued)

description 5-2
sending

network spooled file 5-2
session attribute

identifying 3-23

overriding 3-23
SEU (source entry utility) 2-13
SHARE parameter

*NO value 2-9

description 2-8

open processing 2-9

override exception 3-18
sharing file

close considerations 2-10

commitment control 2-9

feedback areas 2-14

I/O considerations 2-9

in same job

general considerations 2-8
open considerations 2-9

inline data 5-13

library list 2-9

open processing 2-9

override command 2-9

scope in ILE model 2-8

when not possible 2-9
shift-control character

Aacnrvintianm ~f D_n2
UToulipuull vl [= e)
inserting B-8

SNDNETSPLF (Send Network Spooled File)
command 5-2
sort table
copying DBCS master from data file B-16
copying DBCS master to data file B-15
source entry utility (SEU) 2-13
source file
copying 4-1, 4-5
copying database to database source files 4-35
database
copying to database source files 4-35
copying to device source files 4-35
device
copying to database source files 4-35
displaying 2-13
overrides 3-11
source physical file
creating B-6
SPOOL parameter override exception 3-18
spool storage
reclaiming 5-14
spooled file
attribute
changing 5-1
working with 5-1

spooled file (continued)
available for printing 5-2
controlling 5-6
controlling the number of 5-7
copying 5-2, 5-7, B-9
deleting 5-2
description 5-1
displaying 5-2
holding 5-2
locating, using WRKSPLF command 5-2
order on output queue 5-4
ordering

SEQ(*JOBNBR) and SEQ(*FIFO) 5-5

printing 5-2
recovering 5-5
releasing 5-2
security 5-6
status on output queue 5-4
storing data 5-13
tracking those in use 5-13
working with 5-2

spooling
input 5-1, 5-8
output 5-1

performance considerations 5-13
QSPL spooling library 5-13
QSPL spooling subsystem 5-13
readers and writers 5-13
types supported 5-1
spooling library
displaying data in 5-14
QSPL, description 5-13
saving a database file in 5-14
spooling writer 5-6
spooling writer command 5-6
SRCFILE (source file) parameter 3-12
SRCMBR (source member) parameter 3-12
SRCOPT (source update options) parameter 4-35
SRCSEQ (source sequence numbering)
parameter 4-36
Start Character Generator Utility (STRCGU)
command
and other DBCS font table commands B-11, B-14
use B-13
Start Database Reader (STRDBRDR) command 5-9
Start Diskette Reader (STRDKTRDR) command 5-9
Start Diskette Writer (STRDKTWTR) command 5-6
Start Font Management Aid (STRFMA)
command B-11
Start Printer Writer (STRPRTWTR) command 5-6
starting
character generator utility B-11
database reader 5-9
diskette reader 5-9
diskette writer 5-6
font management aid B-11

starting (continued)
printer writer 5-6
STRCGU (Start Character Generator Utility)
command B-11
STRDBRDR (Start Database Reader) command 5-9
STRDKTRDR (Start Diskette Reader) command 5-9
STRDKTWTR (Start Diskette Writer) command 5-6
stream, input 5-8
STRFMA (Start Font Management Aid)
command B-11
string of double-byte characters, how to
identify B-8
STRPRTWTR (Start Printer Writer) command 5-6
Submit Database Jobs (SBMDBJOB) command 5-9
Submit Diskette Jobs (SBMDKTJOB) command 5-9
submit job command 5-9
submitting
database jobs 5-9
diskette jobs 5-9
support
DBCS character display B-8
double-byte character set B-1
file B-5
system
saving B-15
system error log 2-16
system value, QIGC
use DBCS conversion dictionaries
create B-18
delete B-22
display B-22
edit (change, add terms) B-19
edit, examples of B-20
perform object management functions with B-18
print B-22

T
table, DBCS font
check for the existence of B-11
commands used with B-11
deleting B-12
description B-10
restoring from tape or diskette B-12
saving onto diskette B-11
system-supplied B-10
table, DBCS sort
checking for the existence of B-14
commands used with B-14
copying from a data file (move from
System/36) B-16
copying to a data file (move to System/36 or
AS/Entry) B-15
deleting B-16
restoring from tape or diskette B-15
saving onto diskette B-15

Index X-23

tape file
changing 4-15
copying 4-1

CPYFRMTAP (Copy from Tape) command 4-1

CPYTOTAP (Copy to Tape) command 4-1

creating 4-15, B-6

DBCS B-5

overriding with 3-1, 4-15

redirecting input 3-22

redirecting output 3-22

tape label 4-15
temporary change

override commands 2-12
to-file

adding members 4-15

authority required for copying 4-39

creating on copy commands 4-13
TOFILE parameter, overrides 3-18
TOKEY (copy to record key) parameter 4-17
TOLABEL parameter 4-14
TOMBR (to member) parameter 4-14, 4-15
TORCD (copy to record number) parameter 4-17
Transfer Control (TFRCTL) command

file override example 3-6

program device entry overrides 3-25
transfer ownership authority 2-6
transferring

jobs 5-11

U

unnamed inline data file 5-12
unwanted DBCS words, deleting B-29
update authority 2-6
update operation

description 2-1

file types 2-2

high-level language 2-4
user-created dictionary (QUSRIGCDCT) B-17
user-defined output queue 5-4

\'

Vary Configuration (VRYCFG) command B-13
volume label
field A-10

w

WAITFILE parameter 2-11
when to consider
copying
DBCS font table B-11
Japanese DBCS master sort table from file B-16
Japanese DBCS master sort table to file B-15
saving DBCS sort table B-15

X-24 AS/400 Data Management Guide

Work with DBCS Conversion Dictionary
display B-19
Work with Job Queue (WRKJOBQ) command 5-11
Work with Output Queue (WRKOUTQ) command
definition 5-3
displaying status of spooled file 5-6
Work with Output Queue Description (WRKOUTQD)
command 5-4
Work with Spooled File Attributes (WRKSPLFA)
command 5-2
Work with Spooled Files (WRKSPLF) command 5-2
working with
job queue 5-11
output queue 5-3
output queue description 5-4
spooled file attributes 5-2
spooled files 5-2
write operation
description 2-1
file types 2-2
high-level language 2-4
write-read operation
description 2-1
file types 2-2
high-level language 2-4
writer
changing 5-6
commands, spooling 5-6
ending 5-6
holding 5-6
output spooling 5-1
releasing 5-6
spooling 5-6
writing application programs that process double-
byte data B-9
WRKJOBQ (Work with Job Queue) command 5-11
WRKOUTQ (Work with Output Queue) command
definition 5-3
displaying status of spooled file 5-6
WRKOUTQD (Work with Output Queue Description)
command 5-4
WRKSPLF (Work with Spooled Files) command 5-2
WRKSPLFA (Work with Spooled File Attributes)
command 5-2

Z

zoned decimal field conversion 4-34

Customer Satisfaction Feedback

Application System/400
Data Management Guide
Version 2

Publication No. SC41-9658-02

Overall, how would you rate this manual?

i ; Very
Very ofi Dissatis- very
Satisfied Satisfied fied D,?ﬁ:},s_

Overall satisfaction

How satisfied are you that the information in this manual is:

Accurate

Complete

Easy to find

Easy to understand

Well organized

Applicable to your tasks

THANK YOU'!

Please tell us how we can improve this manual:

May we contact you to discuss your responses? __ Yes No

Phone: () Fax: ()
To return this form:
¢ Mail it
e Fax it

United States and Canada: 800+937-3430
Other countries: (+1)+507+253-5192
* Hand it to your IBM representative.

Note that IBM may use or distribute the responses to this form without obligation.

Name Address

Company or Organization

Phone No.

Customer Satisfaction Feedback

SC41-9658-02

Fold and Tape

Piease do not staple

[l
dal
""
®

Fold and Tape

BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN DEPT 245

IBM CORPORATION

3605 HWY 52 N

ROCHESTER MN 55901-7899

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

SC41-9658-02

Please do not staple

Fold and Tape

Cut
Alor

Cut o
Along

Customer Satisfaction Feedback

Application System/400
Data Management Guide
Version 2

Publication No. SC41-9658-02

Overall, how would you rate this manual?

i : Very
Very . Dissatis- . g
Satisfieq | Satisfied fied Dliiseaéls-

Overall satisfaction

How satisfied are you that the information in this manual is:

Accurate

Complete

Easy to find

Easy to understand

Well organized

Applicable to your tasks

THANK YOU!

Please tell us how we can improve this manual:

May we contact you to discuss your responses? __ Yes No

Phone: () Fax: ()
To return this form:
o Mail it
e Faxit

United States and Canada: 800+937-3430
Other countries: (+1)+507+253-5192
e Hand it to your IBM representative.

Note that IBM may use or distribute the responses to this form without obligation.

Name Address

Company or Organization

Phone No.

Customer Satisfaction Feedback

SC41-9658-02

Fold and Tape

Please do not staple

]
[
lIn
<‘||i
||||

®

Fold and Tape

BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

Fold and Tape

SC41-9658-02

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN DEPT 245

IBM CORPORATION

3605 HWY 52 N

ROCHESTER MN 55901-7899

Please do not staple

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

Cut
Alol

i Cut ¢
i Alony

Customer Satisfaction Feedback

Application System/400
Data Management Guide
Version 2

Publication No. SC41-9658-02

Overall, how would you rate this manual?

. . Very
Very . Dissatis- . .
Satisfied | Satisfied fied Dissatle-

Overall satisfaction

How satisfied are you that the information in this manual is:

Accurate

Complete

Easy to find

Easy to understand

Well organized

Applicable to your tasks

THANK YOU!

Please tell us how we can improve this manual:

May we contact you to discuss your responses? __ Yes No

Phone: () Fax: ()
To return this form:
¢ Mail it
e Fax it

United States and Canada: 800+937-3430
Other countries: (+1)+507+253-5192
* Hand it to your IBM representative.

Note that IBM may use or distribute the responses to this form without obligation.

Name Address

Company or Organization

Phone No.

Customer Satisfaction Feedback Cut
SC41-9658-02 Alo
Fold and Tape Please do not staple Fold and Tape
NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES
]
BUSINESS REPLY MAIL e
]
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK TR
]
POSTAGE WILL BE PAID BY ADDRESSEE TT—
]
ATTN DEPT 245 T
IBM CORPORATION
3605 HWY 52 N
ROCHESTER MN 55901-7899
IIIIIIIIIIIIIIII”IIlIIII”III”IIIIIIIIIIIIIIIIIIII
"“I;(;Id and Tape - Please do not staple Folhcni-;lad Tape
Cut ¢
SC41-9658-02 Along

Customer Satisfaction Feedback

Application System/400
Data Management Guide
Version 2

Publication No. SC41-9658-02

Overall, how would you rate this manual?

. . Very
Very e Dissatis- . .
Satistieq | Satisfied fied Dissatis

Overall satisfaction

How satisfied are you that the information in this manual is:

Accurate

Complete

Easy to find

Easy to understand

Well organized

Applicable to your tasks

THANK YOU!

Please tell us how we can improve this manual:

May we contact you to discuss your responses? __ Yes __ No

Phone: () Fax: ()
To return this form:
e Mail it
o Fax it

United States and Canada: 800+937-3430
Other countries: (+1)+507+253-5192
e Hand it to your IBM representative.

Note that IBM may use or distribute the responses to this form without obligation.

Name Address

Company or Organization

Phone No.

Customer Satisfaction Feedback

SC41-9658-02

Fold and Tape

Please do not staple

I
®

Fold and Tape

BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN DEPT 245

IBM CORPORATION

3605 HWY 52 N

ROCHESTER MN 55901-7899

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

SC41-9658-02

Please do not staple

Fold and Tape

Cut
Alor

Cuto
Along

Program Number: 5738-SS1

Printed in Denmark by Bonde's

LTI

	03902785 =====================.tif
	03902786.tif
	03902787.tif
	03902788.tif
	03902789.tif
	03902790.tif
	03902791.tif
	03902792.tif
	03902793.tif
	03902794.tif
	03902795.tif
	03902796.tif
	03902797.tif
	03902798.tif
	03902799.tif
	03902800.tif
	03902801.tif
	03902802.tif
	03902803.tif
	03902804.tif
	03902805.tif
	03902806.tif
	03902807.tif
	03902808.tif
	03902809.tif
	03902810.tif
	03902811.tif
	03902812.tif
	03902813.tif
	03902814.tif
	03902815.tif
	03902816.tif
	03902817.tif
	03902818.tif
	03902819.tif
	03902820.tif
	03902821.tif
	03902822.tif
	03902823.tif
	03902824.tif
	03902825.tif
	03902826.tif
	03902827.tif
	03902828.tif
	03902829.tif
	03902830.tif
	03902831.tif
	03902832.tif
	03902833.tif
	03902834.tif
	03902835.tif
	03902836.tif
	03902837.tif
	03902838.tif
	03902839.tif
	03902840.tif
	03902841.tif
	03902842.tif
	03902843.tif
	03902844.tif
	03902845.tif
	03902846.tif
	03902847.tif
	03902848.tif
	03902849.tif
	03902850.tif
	03902851.tif
	03902852.tif
	03902853.tif
	03902854.tif
	03902855.tif
	03902856.tif
	03902857.tif
	03902858.tif
	03902859.tif
	03902860.tif
	03902861.tif
	03902862.tif
	03902863.tif
	03902864.tif
	03902865.tif
	03902866.tif
	03902867.tif
	03902868.tif
	03902869.tif
	03902870.tif
	03902871.tif
	03902872.tif
	03902873.tif
	03902874.tif
	03902875.tif
	03902876.tif
	03902877.tif
	03902878.tif
	03902879.tif
	03902880.tif
	03902881.tif
	03902882.tif
	03902883.tif
	03902884.tif
	03902885.tif
	03902886.tif
	03902887.tif
	03902888.tif
	03902889.tif
	03902890.tif
	03902891.tif
	03902892.tif
	03902893.tif
	03902894.tif
	03902895.tif
	03902896.tif
	03902897.tif
	03902898.tif
	03902899.tif
	03902900.tif
	03902901.tif
	03902902.tif
	03902903.tif
	03902904.tif
	03902905.tif
	03902906.tif
	03902907.tif
	03902908.tif
	03902909.tif
	03902910.tif
	03902911.tif
	03902912.tif
	03902913.tif
	03902914.tif
	03902915.tif
	03902916.tif
	03902917.tif
	03902918.tif
	03902919.tif
	03902920.tif
	03902921.tif
	03902922.tif
	03902923.tif
	03902924.tif
	03902925.tif
	03902926.tif
	03902927.tif
	03902928.tif
	03902929.tif
	03902930.tif
	03902931.tif
	03902932.tif
	03902933.tif
	03902934.tif
	03902935.tif
	03902936.tif
	03902937.tif
	03902938.tif
	03902939.tif
	03902940.tif
	03902941.tif
	03902942.tif
	03902943.tif
	03902944.tif
	03902945.tif
	03902946.tif
	03902947.tif
	03902948.tif
	03902949.tif
	03902950.tif
	03902951.tif
	03902952.tif
	03902953.tif
	03902954.tif
	03902955.tif
	03902956.tif
	03902957.tif
	03902958.tif
	03902959.tif
	03902960.tif
	03902961.tif
	03902962.tif
	03902963.tif
	03902964.tif
	03902965.tif
	03902966.tif
	03902967.tif
	03902968.tif
	03902969.tif
	03902970.tif
	03902971.tif
	03902972.tif
	03902973.tif
	03902974.tif
	03902975.tif
	03902976.tif
	03902977.tif
	03902978.tif
	03902979.tif
	03902980.tif
	03902981.tif
	03902982.tif
	03902983.tif
	03902984.tif
	03902985.tif
	03902986.tif
	03902987.tif
	03902988.tif
	03902989.tif
	03902990.tif
	03902991.tif
	03902992.tif
	03902993.tif
	03902994.tif
	03902995.tif
	03902996.tif

